EnvCNN: A Convolutional Neural Network Model for Evaluating Isotopic Envelopes in Top-Down Mass-Spectral Deconvolution

被引:11
作者
Basharat, Abdul Rehman [1 ]
Ning, Xia [3 ,4 ]
Liu, Xiaowen [1 ,2 ]
机构
[1] Indiana Univ Purdue Univ, Sch Informat & Comp, Indianapolis, IN 46202 USA
[2] Indiana Univ Sch Med, Ctr Computat Biol & Bioinformat, Indianapolis, IN 46202 USA
[3] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
[4] Ohio State Univ, Dept Comp Sci & Engn, Columbus, OH 43210 USA
基金
美国国家卫生研究院;
关键词
OPEN-SOURCE SOFTWARE; PROTEOMICS; SEARCH; TOOL; IDENTIFICATION; PROTEOFORM; ACCURACY;
D O I
10.1021/acs.analchem.0c00903
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Top-down mass spectrometry has become the main method for intact proteoform identification, characterization, and quantitation. Because of the complexity of top-down mass spectrometry data, spectral deconvolution is an indispensable step in spectral data analysis, which groups spectral peaks into isotopic envelopes and extracts monoisotopic masses of precursor or fragment ions. The performance of spectral deconvolution methods relies heavily on their scoring functions, which distinguish correct envelopes from incorrect ones. A good scoring function increases the accuracy of deconvoluted masses reported from mass spectra. In this paper, we present EnvCNN, a convolutional neural network-based model for evaluating isotopic envelopes. We show that the model outperforms other scoring functions in distinguishing correct envelopes from incorrect ones and that it increases the number of identifications and improves the statistical significance of identifications in top-down spectral interpretation.
引用
收藏
页码:7778 / 7785
页数:8
相关论文
共 54 条
  • [21] ProteoWizard: open source software for rapid proteomics tools development
    Kessner, Darren
    Chambers, Matt
    Burke, Robert
    Agusand, David
    Mallick, Parag
    [J]. BIOINFORMATICS, 2008, 24 (21) : 2534 - 2536
  • [22] Ketkar N., 2017, DEEP LEARNING PYTHON, DOI DOI 10.1007/978-1-4842-2766-4_7
  • [23] Kingma D.P., 2014, arXiv, DOI 10.48550/ARXIV.1412.6980
  • [24] TopPIC: a software tool for top-down mass spectrometry-based proteoform identification and characterization
    Kou, Qiang
    Xun, Likun
    Liu, Xiaowen
    [J]. BIOINFORMATICS, 2016, 32 (22) : 3495 - 3497
  • [25] A new scoring function for top-down spectral deconvolution
    Kou, Qiang
    Wu, Si
    Liu, Xiaowen
    [J]. BMC GENOMICS, 2014, 15
  • [26] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    [J]. COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90
  • [27] masstodon: A Tool for Assigning Peaks and Modeling Electron Transfer Reactions in Top-Down Mass Spectrometry
    Lacki, Mateusz K.
    Lermyte, Frederik
    Miasojedow, Blazej
    Startek, Michal P.
    Sobott, Frank
    Valkenborg, Dirk
    Gambin, Anna
    [J]. ANALYTICAL CHEMISTRY, 2019, 91 (03) : 1801 - 1807
  • [28] Gradient-based learning applied to document recognition
    Lecun, Y
    Bottou, L
    Bengio, Y
    Haffner, P
    [J]. PROCEEDINGS OF THE IEEE, 1998, 86 (11) : 2278 - 2324
  • [29] Interpreting raw biological mass spectra using isotopic mass-to-charge ratio and envelope fingerprinting
    Li, Li
    Tian, Zhixin
    [J]. RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2013, 27 (11) : 1267 - 1277
  • [30] Deconvolution and Database Search of Complex Tandem Mass Spectra of Intact Proteins
    Liu, Xiaowen
    Inbar, Yuval
    Dorrestein, Pieter C.
    Wynne, Colin
    Edwards, Nathan
    Souda, Puneet
    Whitelegge, Julian P.
    Bafna, Vineet
    Pevzner, Pavel A.
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2010, 9 (12) : 2772 - 2782