NH4V3O8•0.5H2O nanobelts with intercalated water molecules as a high performance zinc ion battery cathode

被引:95
作者
Jiang, Hanmei [1 ]
Zhang, Yifu [1 ,2 ]
Pan, Zhenghui [2 ]
Xu, Lei [1 ]
Zheng, Jiqi [1 ]
Gao, Zhanming [1 ]
Hu, Tao [1 ]
Meng, Changgong [1 ]
Wang, John [2 ]
机构
[1] Dalian Univ Technol, Sch Chem Engn, Dalian 116024, Peoples R China
[2] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117574, Singapore
基金
中国国家自然科学基金;
关键词
HIGH-ENERGY; HIERARCHICAL SPHERES; OXIDE NANOSHEETS; ELECTRODE; SUPERCAPACITOR; CAPACITANCE; COMPOSITE;
D O I
10.1039/d0qm00051e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aqueous rechargeable Zn-ion batteries (ARZIBs) have been attracting huge attention recently, where V-based materials with host layer structures and fast channels enable the efficient diffusion of metal ions, leading to excellent properties of Zn2+ storage. Several ammonium vanadates have been explored as potential cathodes, and their performance in ARZIBs varies considerably. Herein, we choose H2O-intercalated NH4V3O8 (NH4V3O8 center dot 0.5H(2)O) nanobelts, which are synthesized by a low-temperature hydrothermal process, and reveal that the electrochemical performance of NH4V3O8 is strongly enhanced by the H2O molecules intercalated in the layer structure. Indeed, the NH4V3O8 center dot 0.5H(2)O nanobelts exhibit a super-high capacity of 423 mA h g(-1) at 0.1 A g(-1), together with long-term stability (50.1% retention after 1000 cycles) at 1 A g(-1). The Zn//NH4V3O8 center dot 0.5H(2)O battery thus assembled delivers a high energy density of 353 W h kg(-1) at a power density of 114 W kg(-1), comparing favorably with most of the state-of-the-art V-based cathode materials reported for ARZIBs. As a promising cathode candidate for aqueous batteries, the reversible (de)intercalation of Zn2+ in the H2O-intercalated NH4V3O8 center dot 0.5H(2)O gives rise to the formation of Zn-3(OH)(2)V2O7 center dot 2H(2)O, which helps retain the desired long-term stability.
引用
收藏
页码:1434 / 1443
页数:10
相关论文
共 58 条
[1]   A Raman study of the lithium insertion process in vanadium pentoxide thin films deposited by atomic layer deposition [J].
Baddour-Hadjean, R ;
Golabkan, V ;
Pereira-Ramos, JP ;
Mantoux, A ;
Lincot, D .
JOURNAL OF RAMAN SPECTROSCOPY, 2002, 33 (08) :631-638
[2]   Engineering a High-Energy-Density and Long Lifespan Aqueous Zinc Battery via Ammonium Vanadium Bronze [J].
Bin, Duan ;
Liu, Yao ;
Yang, Beibei ;
Huang, Jianhang ;
Dong, Xiaoli ;
Zhang, Xiao ;
Wang, Yonggang ;
Xia, Yongyao .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (23) :20796-20803
[3]   Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode [J].
Cai, Yangsheng ;
Liu, Fei ;
Luo, Zhigao ;
Fang, Guozhao ;
Zhou, Jiang ;
Pan, Anqiang ;
Liang, Shuquan .
ENERGY STORAGE MATERIALS, 2018, 13 :168-174
[4]   General strategy toward hexagonal ring-like layered double hydroxides and their application for asymmetric supercapacitors [J].
Chen, Hang ;
Zhang, Heng ;
Zhang, Yi ;
Wang, Yun ;
Su, Xintai ;
Zhang, Lijuan ;
Lin, Zhang .
CHEMICAL ENGINEERING JOURNAL, 2019, 375
[5]   Three-Dimensional Network of Vanadium Oxyhydroxide Nanowires Hybridize with Carbonaceous Materials with Enhanced Electrochemical Performance for Supercapacitor [J].
Chen, Meng ;
Zhang, Yifu ;
Liu, Yanyan ;
Wang, Qiushi ;
Zheng, Jiqi ;
Meng, Changgong .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (10) :5527-5538
[6]   Template Fabrication of Amorphous Co2SiO4 Nanobelts/Graphene Oxide Composites with Enhanced Electrochemical Performances for Hybrid Supercapacitors [J].
Cheng, Yan ;
Zhang, Yifu ;
Meng, Changgong .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (05) :3830-3839
[7]   Ultrafast Zn2+ Intercalation and Deintercalation in Vanadium Dioxide [J].
Ding, Junwei ;
Du, Zhiguo ;
Gu, Linqing ;
Li, Bin ;
Wang, Lizhen ;
Wang, Shiwen ;
Gong, Yongji ;
Yang, Shubin .
ADVANCED MATERIALS, 2018, 30 (26)
[8]   Recent Advances in Aqueous Zinc-Ion Batteries [J].
Fang, Guozhao ;
Zhou, Jiang ;
Pan, Anqiang ;
Liang, Shuquan .
ACS ENERGY LETTERS, 2018, 3 (10) :2480-2501
[9]   Mechanistic Insights of Zn2+ Storage in Sodium Vanadates [J].
Guo, Xun ;
Fang, Guozhao ;
Zhang, Wenyu ;
Zhou, Jiang ;
Shan, Lutong ;
Wang, Liangbing ;
Wang, Chao ;
Lin, Tianquan ;
Tang, Yan ;
Liang, Shuquan .
ADVANCED ENERGY MATERIALS, 2018, 8 (27)
[10]  
Guo Z., 2018, ANGEW CHEM INT EDIT, V130, P11911