共 48 条
Molecular insight into the T798M gatekeeper mutation-caused acquired resistance to tyrosine kinase inhibitors in ErbB2-positive breast cancer
被引:5
作者:
Lu, Ji
[1
]
Zhou, Kun
[1
]
Yin, Xiaoxing
[2
]
Xu, Han
[2
]
Ma, Baojin
[1
]
机构:
[1] Fudan Univ, Huashan Hosp, Dept Gen Surg, Shanghai, Peoples R China
[2] Jingan Dist Cent Hosp, Dept Gen Surg, Shanghai 200040, Peoples R China
关键词:
Epidermal growth factor receptor 2;
Gatekeeper mutation;
Tyrosine kinase inhibitor;
Acquired resistance;
Breast cancer;
PEPTIDE BINDING-AFFINITY;
DRUG-RESISTANCE;
MECHANISM;
EGFR;
PREDICTION;
THERAPY;
TARGET;
HER-2;
RECOGNITION;
LAPATINIB;
D O I:
10.1016/j.compbiolchem.2018.12.007
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Human epidermal growth factor receptor 2 (ErbB2) is an attractive therapeutic target for metastatic breast cancer. The kinase has been clinically observed to harbor a gatekeeper mutation T798M in its active site, which causes acquired resistance to the first-line targeted breast cancer therapy with small-molecule tyrosine kinase inhibitors. Previously, several theories have been proposed to explain the molecular mechanism of gatekeeper mutation-caused drug resistance, such as blocking of inhibitor binding and increasing of ATP affinity. In the current study, the direct binding of three wild type-selective inhibitors (Lapatinib, AEE788 and TAK-285) and two wild type-sparing inhibitors (Staurosporine and Bosutinib) to the wild-type ErbB2 and its T798M mutant are investigated in detail by using rigorous computational analysis and binding affinity assay. Substitution of the polar threonine with a bulky methionine at residue 798 can impair and improve the direct binding affinity of wild type-selective and wild type-sparing inhibitors, respectively. Hindrance effect is responsible for the affinity decrease of wild type-selective inhibitors, while additional nonbonded interactions contribute to the affinity increase of wild type-sparing inhibitors, thus conferring selectivity to the inhibitors for mutant over wild type. The binding affinity of Staurosporine and Bosutinib to ErbB2 kinase domain is improved by 11.9-fold and 2.1-fold upon T798M mutation, respectively. Structural analysis reveals that a nonbonded network of S-pi contact interactions (for Staurosporine) or an S-involving halogen bond (for Bosutinib) forms with the sulfide group of mutant Met798 residue.
引用
收藏
页码:290 / 296
页数:7
相关论文