In this paper we consider polynomials, orthogonal with respect to an inner product which consists of the classical Laguerre inner product combined with two linear perturbations of Sobolev type at x = 0. We derive linear differential operators, of a specific form and usually of infinite order, having these polynomials as eigenfunctions. In the case, alpha is a nonnegative integer one of the operators is of finite order. (C) 2001 Elsevier Science B.V. All rights reserved.
机构:
Delft Univ Technol, Fac Tech Math & Informat, NL-2628 CD Delft, NetherlandsDelft Univ Technol, Fac Tech Math & Informat, NL-2628 CD Delft, Netherlands
机构:
Delft Univ Technol, Fac Tech Math & Informat, NL-2600 GA Delft, NetherlandsDelft Univ Technol, Fac Tech Math & Informat, NL-2600 GA Delft, Netherlands
Koekoek, J
Koekoek, R
论文数: 0引用数: 0
h-index: 0
机构:
Delft Univ Technol, Fac Tech Math & Informat, NL-2600 GA Delft, NetherlandsDelft Univ Technol, Fac Tech Math & Informat, NL-2600 GA Delft, Netherlands
Koekoek, R
Bavinck, H
论文数: 0引用数: 0
h-index: 0
机构:
Delft Univ Technol, Fac Tech Math & Informat, NL-2600 GA Delft, NetherlandsDelft Univ Technol, Fac Tech Math & Informat, NL-2600 GA Delft, Netherlands
机构:
Delft Univ Technol, Fac Tech Math & Informat, NL-2628 CD Delft, NetherlandsDelft Univ Technol, Fac Tech Math & Informat, NL-2628 CD Delft, Netherlands
机构:
Delft Univ Technol, Fac Tech Math & Informat, NL-2600 GA Delft, NetherlandsDelft Univ Technol, Fac Tech Math & Informat, NL-2600 GA Delft, Netherlands
Koekoek, J
Koekoek, R
论文数: 0引用数: 0
h-index: 0
机构:
Delft Univ Technol, Fac Tech Math & Informat, NL-2600 GA Delft, NetherlandsDelft Univ Technol, Fac Tech Math & Informat, NL-2600 GA Delft, Netherlands
Koekoek, R
Bavinck, H
论文数: 0引用数: 0
h-index: 0
机构:
Delft Univ Technol, Fac Tech Math & Informat, NL-2600 GA Delft, NetherlandsDelft Univ Technol, Fac Tech Math & Informat, NL-2600 GA Delft, Netherlands