Extending the Fundamental Error Bounds for Asymmetric Error Reliable Computation

被引:0
作者
Aymerich, Nivard
Rubio, Antonio
机构
来源
PROCEEDINGS OF THE 2013 IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES (NANOARCH) | 2013年
关键词
MAXIMUM TOLERABLE NOISE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Future computing systems based on new emerging nanotechnologies will have to rely on very high failure rate devices. Therefore, the study of fault-tolerant architectures is of great interest today. One of the most challenging problems of this research area consists in finding the fundamental error bounds beyond which reliable computation is not possible. In the literature we can find the exact error threshold for circuits built out of noisy NAND gates under the von Neumann's probabilistic computing framework. In this paper we extend this result for asymmetric error designs and demonstrate that it is possible to compute reliably with 2-input noisy NAND gates beyond the well known error bound: epsilon(*) - (3 - root 7)/4.
引用
收藏
页码:106 / 109
页数:4
相关论文
共 8 条
[1]  
[Anonymous], 1956, Autom. Stud., DOI [10.1515/9781400882618-003, DOI 10.1515/9781400882618-003]
[2]   Designing reliable systems from unreliable components: The challenges of transistor variability and degradation [J].
Borkar, S .
IEEE MICRO, 2005, 25 (06) :10-16
[3]   Electronics beyond nano-scale CMOS [J].
Borkar, Shekhar .
43rd Design Automation Conference, Proceedings 2006, 2006, :807-808
[4]   On the maximum tolerable noise for reliable computation by formulas [J].
Evans, W ;
Pippenger, N .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (03) :1299-1305
[5]   On the maximum tolerable noise of k-input gates for reliable computation by formulas [J].
Evans, WS ;
Schulman, LJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (11) :3094-3098
[6]   Bifurcations and fundamental error bounds for fault-tolerant computations [J].
Gao, JB ;
Qi, Y ;
Fortes, JAB .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2005, 4 (04) :395-402
[7]   ON THE MAXIMUM TOLERABLE NOISE FOR RELIABLE COMPUTATION BY FORMULAS [J].
HAJEK, B ;
WELLER, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (02) :388-391
[8]   Noise threshold for universality of two-input gates [J].
Unger, Falk .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (08) :3693-3698