Motion-aware future frame prediction for video anomaly detection based on saliency perception

被引:4
作者
Xu, Haitao [1 ]
Liu, Weibin [1 ]
Xing, Weiwei [2 ]
Wei, Xiang [2 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[2] Beijing Jiaotong Univ, Sch Software Engn, Beijing 100044, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Video anomaly detection; Saliency perception; Motion-aware attention; Frame prediction; Unsupervised learning; ABNORMAL EVENT DETECTION; HISTOGRAMS;
D O I
10.1007/s11760-022-02174-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The anomaly in videos can be considered as a deviation from regular video sequences. Most existing approaches neglect the imbalanced information distribution between the foreground and the background during the process of reconstruction or prediction. To address this problem, we propose a motion-aware future frame prediction network consisting of a frame prediction branch and a saliency perception branch. In particular, the saliency perception branch is designed to predict the most salient targets in the video frame, and the frame prediction branch is used to predict the RGB future frame with the guidance of saliency perception. Besides, a motion-aware attention module is bridged in the frame prediction branch to improve the representation ability of moving targets. Furthermore, a saliency prediction loss and a saliency-guided appearance loss are designed to optimize saliency prediction frames and constrain the weight of foreground. Experiments on three challenging benchmarks demonstrate our competitive performance with the state-of-the-art approaches.
引用
收藏
页码:2121 / 2129
页数:9
相关论文
共 32 条
[1]   Latent Space Autoregression for Novelty Detection [J].
Abati, Davide ;
Porrello, Angelo ;
Calderara, Simone ;
Cucchiara, Rita .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :481-490
[2]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[3]   Human detection using oriented histograms of flow and appearance [J].
Dalal, Navneet ;
Triggs, Bill ;
Schmid, Cordelia .
COMPUTER VISION - ECCV 2006, PT 2, PROCEEDINGS, 2006, 3952 :428-441
[4]   Residual spatiotemporal autoencoder for unsupervised video anomaly detection [J].
Deepak, K. ;
Chandrakala, S. ;
Mohan, C. Krishna .
SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (01) :215-222
[5]   FlowNet: Learning Optical Flow with Convolutional Networks [J].
Dosovitskiy, Alexey ;
Fischer, Philipp ;
Ilg, Eddy ;
Haeusser, Philip ;
Hazirbas, Caner ;
Golkov, Vladimir ;
van der Smagt, Patrick ;
Cremers, Daniel ;
Brox, Thomas .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2758-2766
[6]   Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection [J].
Gong, Dong ;
Liu, Lingqiao ;
Le, Vuong ;
Saha, Budhaditya ;
Mansour, Moussa Reda ;
Venkatesh, Svetha ;
van den Hengel, Anton .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :1705-1714
[7]   Learning Temporal Regularity in Video Sequences [J].
Hasan, Mahmudul ;
Choi, Jonghyun ;
Neumann, Jan ;
Roy-Chowdhury, Amit K. ;
Davis, Larry S. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :733-742
[8]   Anomaly detection based on sparse coding with two kinds of dictionaries [J].
Li, Shifeng ;
Liu, Chunxiao ;
Yang, Yuqiang .
SIGNAL IMAGE AND VIDEO PROCESSING, 2018, 12 (05) :983-989
[9]   Abnormal event detection and localization using level set based on hybrid features [J].
Liu Kangwei ;
Wan Jianhua ;
Han Zhongzhi .
SIGNAL IMAGE AND VIDEO PROCESSING, 2018, 12 (02) :255-261
[10]   Exploring Background-bias for Anomaly Detection in Surveillance Videos [J].
Liu, Kun ;
Ma, Huadong .
PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, :1490-1499