Composition-Diamond Lemma for associative conformal algebras

被引:32
作者
Bokut, LA
Fong, Y
Ke, WF [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Math, Tainan, Taiwan
[2] Sobolev Inst Math, Novosibirsk, Russia
关键词
D O I
10.1016/S0021-8693(03)00341-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the Composition-Diamond Lemma for associative conformal algebras. As some corollaries, we prove that the word problem for some homogeneous associative conformal algebras is solvable, while it is unsolvable in general. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:739 / 774
页数:36
相关论文
共 51 条
[1]  
ADAMS W, 1994, GRAD STUD MATH, V3
[2]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[3]   DIAMOND LEMMA FOR RING THEORY [J].
BERGMAN, GM .
ADVANCES IN MATHEMATICS, 1978, 29 (02) :178-218
[4]   Grobner-Shirshov bases for quantum enveloping algebras [J].
Bokut, L ;
Malcolmson, P .
ISRAEL JOURNAL OF MATHEMATICS, 1996, 96 :97-113
[5]  
Bokut L. A., 1997, P 2 TAIN MOSC ALG CO, P13
[6]  
Bokut L.A., 1978, T MAT I STEKLOVA, V148, P30
[7]  
Bokut L. A., 1994, Mathematics and its Applications, V255
[8]  
Bokut L. A., 2000, CONT MATH, V264, P63
[9]  
Bokut L.A., 1976, ALGEBRA LOGIKA+, V15, P117
[10]  
Bokut L. A., 1996, INT J ALGEBR COMPUT, V6, P389, DOI 10.1142/S0218196796000222