ScoreGAN: A Fraud Review Detector Based on Regulated GAN With Data Augmentation

被引:12
作者
Shehnepoor, Saeedreza [1 ]
Togneri, Roberto [1 ]
Liu, Wei [2 ]
Bennamoun, Mohammed [2 ]
机构
[1] Univ Western Australia, Sch Elect Elect & Comp Engn, Perth, WA 6009, Australia
[2] Univ Western Australia, Dept Comp Sci & Software Engn, Perth, WA 6009, Australia
关键词
Feature extraction; Generative adversarial networks; Metadata; Australia; Deep learning; Training; Generators; Fraud reviews detection; deep learning; generative adversarial networks; joint representation; information gain maximization;
D O I
10.1109/TIFS.2021.3139771
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The promising performance of Deep Neural Networks (DNNs) in text classification has attracted researchers to use them for fraud review detection. However, the lack of trusted labeled data has limited the performance of the current solutions in detecting fraud reviews. The Generative Adversarial Network (GAN) as a semi-supervised method has been demonstrated to be effective for data augmentation purposes. The state-of-the-art solutions utilize GANs to overcome the data scarcity problem. However, they fail to incorporate the behavioral clues in fraud generation. Additionally, state-of-the-art approaches overlook the possible bot-generated reviews in the dataset. Finally, they also suffer from a common limitation in the generalization and stability of the GAN, slowing down the training procedure. In this work, we propose ScoreGAN for fraud review detection that makes use of both review text and review rating scores in the generation and detection process. Scores are incorporated through Information Gain Maximization (IGM) into the loss function for three reasons. One is to generate score-correlated reviews based on the scores given to the generator. Second, the generated reviews are employed to train the discriminator, allowing the discriminator to correctly label the possible bot-generated reviews through joint representations learned from the concatenation of GLobal Vector for Word representation (GLoVe) extracted from the text and the score. Finally, it can be used to improve the stability and generalization of the GAN. Results show that the proposed framework outperformed the existing state-of-the-art FakeGAN framework, in terms of AP by 7%, and 5% on the Yelp and TripAdvisor datasets, respectively.
引用
收藏
页码:280 / 291
页数:12
相关论文
共 47 条
[1]   Detecting Deceptive Reviews using Generative Adversarial Networks [J].
Aghakhani, Hojjat ;
Machiry, Aravind ;
Nilizadeh, Shirin ;
Kruegel, Christopher ;
Vigna, Giovanni .
2018 IEEE SYMPOSIUM ON SECURITY AND PRIVACY WORKSHOPS (SPW 2018), 2018, :89-95
[2]  
[Anonymous], 2013, What Yelp Fake Review Filter Might Be Doing?
[3]  
[Anonymous], 2008, P 2008 INT C WEB SEA, DOI DOI 10.1145/1341531.1341560
[4]  
[Anonymous], 2010, P 19 ACM INT C INFOR, DOI DOI 10.1145/1871437.1871557
[5]  
[Anonymous], 2015, 70 AMERICANS SEEK OU
[6]  
[Anonymous], 2012, P 50 ANN M ASS COMPU
[7]  
Barber D, 2004, ADV NEUR IN, V16, P201
[8]   Multiagent Reinforcement Learning: Rollout and Policy Iteration [J].
Bertsekas, Dimitri .
IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2021, 8 (02) :249-272
[9]  
Chen X, 2016, ADV NEUR IN, V29
[10]  
Conroy N.J., 2015, P ASS INFORM SCI TEC, P1, DOI DOI 10.1002/PRA2.2015.145052010082