Multiple bright soliton solutions of a reverse-space nonlocal nonlinear Schrodinger equation

被引:24
作者
Chen, Junchao [1 ,2 ]
Yan, Qixiu [1 ,2 ]
Zhang, Hao [1 ,2 ]
机构
[1] Lishui Univ, Dept Math, Lishui 323000, Peoples R China
[2] Lishui Univ, Inst Nonlinear Anal, Lishui 323000, Peoples R China
基金
中国国家自然科学基金;
关键词
Reverse-space nonlocal NLS equation; Hirota's bilinear method; KP hierarchy reduction; Multi-soliton solutions; Paired soliton; DARBOUX TRANSFORMATIONS; HIERARCHY;
D O I
10.1016/j.aml.2020.106375
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multiple bright soliton solutions in determinant form for a focusing nonlocal nonlinear Schrodinger (NLS) equation are derived via the bilinear method and the KP hierarchy reduction. It is shown that only multi-soliton solutions with even numbers are allowed and each paired soliton exhibits the head-on collision with the same velocity in the interaction process. One paired soliton describes the different collision patterns including the centering-hump, the centering-valley, and the spatial interference as well as a degenerate soliton with position shifts. Higher-order soliton solutions depict the interactions among different types of the paired soliton, in which a reduced four-soliton solution exhibits an interesting breathing soliton with position shifts. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 28 条
[1]   Inverse scattering transform for the nonlocal nonlinear Schrodinger equation with nonzero boundary conditions [J].
Ablowitz, Mark J. ;
Luo, Xu-Dan ;
Musslimani, Ziad H. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
[2]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[3]   Integrable discrete PT symmetric model [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW E, 2014, 90 (03)
[4]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[5]   Solutions of Nonlocal Equations Reduced from the AKNS Hierarchy [J].
Chen, Kui ;
Deng, Xiao ;
Lou, Senyue ;
Zhang, Da-jun .
STUDIES IN APPLIED MATHEMATICS, 2018, 141 (01) :113-141
[6]   Solutions of the nonlocal nonlinear Schrodinger hierarchy via reduction [J].
Chen, Kui ;
Zhang, Da-jun .
APPLIED MATHEMATICS LETTERS, 2018, 75 :82-88
[7]   Bilinearisation-reduction approach to the nonlocal discrete nonlinear Schrodinger equations [J].
Deng, Xiao ;
Lou, Senyue ;
Zhang, Da-jun .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 332 :477-483
[8]   General soliton solution to a nonlocal nonlinear Schrodinger equation with zero and nonzero boundary conditions [J].
Feng, Bao-Feng ;
Luo, Xu-Dan ;
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2018, 31 (12) :5385-5409
[9]   General N-soliton solution to a vector nonlinear Schrodinger equation [J].
Feng, Bao-Feng .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (35)
[10]   Integrable multidimensional versions of the nonlocal nonlinear Schrodinger equation [J].
Fokas, A. S. .
NONLINEARITY, 2016, 29 (02) :319-324