Dynamic Simulation of Battery/Supercapacitor Hybrid Energy Storage System for the Electric Vehicles

被引:6
|
作者
Yaici, Wahiba [1 ]
Kouchachvili, Lia [1 ]
Entchev, Evgueniy [1 ]
Longo, Michela [2 ]
机构
[1] Nat Resources Canada, CanmetENERGY Res Ctr, Ottawa, ON, Canada
[2] Politecn Milan, Dept Energy, Milan, Italy
来源
2019 8TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA 2019) | 2019年
关键词
Hybrid energy storage system; battery; supercapacitor; electric vehicles; hybrid topologies; performance; simulation; DOUBLE-LAYER CAPACITORS; LITHIUM-ION; MODELS; ULTRACAPACITORS; TECHNOLOGIES; BATTERIES;
D O I
10.1109/icrera47325.2019.8996509
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
One of the most efficient options for enhancing energy use by electric vehicles is through hybridization using supercapacitors (SCs). A supercapacitor has many beneficial features especially its high efficiency, capacity to store large amounts of energy, a simpler charging system and quick delivery of charge. The objective of this paper was to highlight the benefits and demonstrate the feasibility of using SCs in combination with parallel battery in EVs by employing a modelling and simulation method. A semi-active topology which employed a single DC/DC converter was selected, and the performance of the battery/SC hybrid energy storage system (HESS) was evaluated for possible reduction in stress and extended battery life. The HESS was modelled based on generic battery, SC and converter models within Simscape Power Systems in Matlab-Simulink and ADVISOR. The HESS model was validated by data from the literature and showed a good compatibility. This implies that the model used in the present study is reliable and have a high probability of deriving an accurate prediction of the HESS performance. Dynamic simulations were performed for Tesla S70 electric car. The results relating to hybridization showed a significant reduction in battery charge. The SC power contribution and the range extension in the HESS was estimated to be in average 21.5% and 80 kin for the USC06 driving cycle, respectively. The simulation results presented a range of verified benefits attributed to the HESS: by deploying transient currents during acceleration and deceleration which greatly reduces battery stress, there is significant enhancement of system performance; an appreciable reduction in the number of cycles/year has a direct positive impact on battery aging process; there is a striking increase in vehicle range; and finally, it provides insulation for the battery pack at very cold ambient air temperatures. Moreover, the hybridization could allow reducing the size of the primary power source or the EV battery.
引用
收藏
页码:460 / 465
页数:6
相关论文
共 50 条
  • [21] Sizing of Lithium-Ion Battery/Supercapacitor Hybrid Energy Storage System for Forklift Vehicle
    Paul, Theophile
    Mesbahi, Tedjani
    Durand, Sylvain
    Flieller, Damien
    Uhring, Wilfried
    ENERGIES, 2020, 13 (17)
  • [22] Thermal Stability of Supercapacitor for Hybrid Energy Storage System in Lightweight Electric Vehicles: Simulation and Experiments
    Mali, Vima
    Tripathi, Brijesh
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2022, 10 (01) : 170 - 178
  • [23] An overview of frequency-based power split strategies in electric vehicles with battery/supercapacitor hybrid energy storage system
    Corapsiz, Muhammed Resit
    Kahveci, Hakan
    ENERGY STORAGE, 2023, 5 (06)
  • [24] A predictive energy management system for hybrid energy storage systems in electric vehicles
    Zhang, Qiao
    Li, Gang
    ELECTRICAL ENGINEERING, 2019, 101 (03) : 759 - 770
  • [25] A Novel Hybrid Energy Storage System for Electric Vehicles
    Porru, Mario
    Serpi, Alessandro
    Marongiu, Ignazio
    Damiano, Alfonso
    IECON 2015 - 41ST ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2015, : 3732 - 3737
  • [26] A real-time energy management control strategy for battery and supercapacitor hybrid energy storage systems of pure electric vehicles
    Zhang, Qiao
    Wang, Lijia
    Li, Gang
    Liu, Yan
    JOURNAL OF ENERGY STORAGE, 2020, 31
  • [27] An improved speed-dependent battery/ultracapacitor hybrid energy storage system management strategy for electric vehicles
    So, Kai Man
    Hong, Geok Soon
    Lu, Wen Feng
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2021, 235 (14) : 3459 - 3473
  • [28] An Adaptive Energy Management Strategy for Fuel Cell/Battery/Supercapacitor Hybrid Energy Storage Systems of Electric Vehicles
    Zhang, Qiao
    Han, Jiqiang
    Li, Gang
    Liu, Yan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (04): : 3410 - 3433
  • [29] Implementation of an estimator-based adaptive sliding mode control strategy for a boost converter based battery/supercapacitor hybrid energy storage system in electric vehicles
    Wang, Bin
    Xu, Jun
    Xu, Dan
    Yan, Zhen
    ENERGY CONVERSION AND MANAGEMENT, 2017, 151 : 562 - 572
  • [30] A New Battery/UltraCapacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles
    Cao, Jian
    Emadi, Ali
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2012, 27 (01) : 122 - 132