Dynamic Simulation of Battery/Supercapacitor Hybrid Energy Storage System for the Electric Vehicles

被引:6
|
作者
Yaici, Wahiba [1 ]
Kouchachvili, Lia [1 ]
Entchev, Evgueniy [1 ]
Longo, Michela [2 ]
机构
[1] Nat Resources Canada, CanmetENERGY Res Ctr, Ottawa, ON, Canada
[2] Politecn Milan, Dept Energy, Milan, Italy
来源
2019 8TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA 2019) | 2019年
关键词
Hybrid energy storage system; battery; supercapacitor; electric vehicles; hybrid topologies; performance; simulation; DOUBLE-LAYER CAPACITORS; LITHIUM-ION; MODELS; ULTRACAPACITORS; TECHNOLOGIES; BATTERIES;
D O I
10.1109/icrera47325.2019.8996509
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
One of the most efficient options for enhancing energy use by electric vehicles is through hybridization using supercapacitors (SCs). A supercapacitor has many beneficial features especially its high efficiency, capacity to store large amounts of energy, a simpler charging system and quick delivery of charge. The objective of this paper was to highlight the benefits and demonstrate the feasibility of using SCs in combination with parallel battery in EVs by employing a modelling and simulation method. A semi-active topology which employed a single DC/DC converter was selected, and the performance of the battery/SC hybrid energy storage system (HESS) was evaluated for possible reduction in stress and extended battery life. The HESS was modelled based on generic battery, SC and converter models within Simscape Power Systems in Matlab-Simulink and ADVISOR. The HESS model was validated by data from the literature and showed a good compatibility. This implies that the model used in the present study is reliable and have a high probability of deriving an accurate prediction of the HESS performance. Dynamic simulations were performed for Tesla S70 electric car. The results relating to hybridization showed a significant reduction in battery charge. The SC power contribution and the range extension in the HESS was estimated to be in average 21.5% and 80 kin for the USC06 driving cycle, respectively. The simulation results presented a range of verified benefits attributed to the HESS: by deploying transient currents during acceleration and deceleration which greatly reduces battery stress, there is significant enhancement of system performance; an appreciable reduction in the number of cycles/year has a direct positive impact on battery aging process; there is a striking increase in vehicle range; and finally, it provides insulation for the battery pack at very cold ambient air temperatures. Moreover, the hybridization could allow reducing the size of the primary power source or the EV battery.
引用
收藏
页码:460 / 465
页数:6
相关论文
共 50 条
  • [1] Hybrid battery/supercapacitor energy storage system for the electric vehicles
    Kouchachvili, Lia
    Yaici, Wahiba
    Entchev, Evgueniy
    JOURNAL OF POWER SOURCES, 2018, 374 : 237 - 248
  • [2] Modeling and simulation of photovoltaic powered battery-supercapacitor hybrid energy storage system for electric vehicles
    Raut, Kiran
    Shendge, Asha
    Chaudhari, Jagdish
    Lamba, Ravita
    Alshammari, Nahar F.
    JOURNAL OF ENERGY STORAGE, 2024, 82
  • [3] Simulation of Battery/Supercapacitor Hybrid Energy Storage System for More Electric Aircraft
    Corcau, Jenica-Ileana
    Dinca, Liviu
    2024 27TH INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION, SPEEDAM 2024, 2024, : 345 - 350
  • [4] Numerical modeling of hybrid supercapacitor battery energy storage system for electric vehicles
    Saw, Lip Huat
    Poon, Hiew Mun
    Chong, Wen Tong
    Wang, Chin-Tsan
    Yew, Ming Chian
    Yew, Ming Kun
    Ng, Tan Ching
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 2750 - 2755
  • [5] Control of a battery/supercapacitor hybrid energy storage system for electric vehicles
    Zhang, Lijun
    Xia, Xiaohua
    Barzegar, Farshad
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 9560 - 9565
  • [6] Parameter Matching Method of a Battery-Supercapacitor Hybrid Energy Storage System for Electric Vehicles
    Liu, Fengchen
    Wang, Chun
    Luo, Yunrong
    WORLD ELECTRIC VEHICLE JOURNAL, 2021, 12 (04)
  • [7] Battery Degradation Minimization-Oriented Hybrid Energy Storage System for Electric Vehicles
    Zhang, Cong
    Wang, Dai
    Wang, Bin
    Tong, Fan
    ENERGIES, 2020, 13 (01)
  • [8] H∞ Control for Battery/Supercapacitor Hybrid Energy Storage System Used in Electric Vehicles
    Zhifeng Bai
    Zengfeng Yan
    Xiaolan Wu
    Jun Xu
    Binggang Cao
    International Journal of Automotive Technology, 2019, 20 : 1287 - 1296
  • [9] H∞ Control for Battery/Supercapacitor Hybrid Energy Storage System Used in Electric Vehicles
    Bai, Zhifeng
    Yan, Zengfeng
    Wu, Xiaolan
    Xu, Jun
    Cao, Binggang
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2019, 20 (06) : 1287 - 1296
  • [10] Robust Tracking Control Design of Hybrid Battery-Supercapacitor Energy Storage System in Electric Vehicles
    Zhao, Yang
    Qin, Feiyan
    Zhang, Zhaoyun
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (01): : 3262 - 3276