Optimization of Large Scale Produced Hard Carbon Performance in Na-Ion Batteries: Effect of Precursor, Temperature and Processing Conditions

被引:47
作者
Irisarri, E. [1 ]
Amini, N. [2 ]
Tennison, S. [2 ]
Ghimbeu, C. Matei [3 ,4 ]
Gorka, J. [3 ]
Vix-Guterl, C. [3 ,4 ]
Ponrouch, A. [1 ,5 ]
Palacin, M. R. [1 ,5 ]
机构
[1] CSIC, Inst Ciencia Mat Barcelona ICMAB, Campus UAB, E-08193 Bellaterra, Catalonia, Spain
[2] CarbonTex Ltd, Addlestone KT15 3HR, Surrey, England
[3] Univ Haute Alsace, Univ Strasbourg, Inst Sci Mat Mulhouse, CNRS,UMR 7361, F-68057 Mulhouse, France
[4] CNRS, FR 3459, RS2E, F-80039 Amiens, France
[5] European Res Inst, ALISTORE, Barcelona, Spain
基金
欧盟地平线“2020”;
关键词
SODIUM; ELECTROLYTE; LITHIUM; ADSORPTION; INSERTION; GRAPHITE; LI;
D O I
10.1149/2.1171816jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Hard carbon materials were prepared from different precursors (phenolic resin and commercially available cellulose and lignin) under different pyrolysis and processing conditions using industrially adapted syntheses protocols. The study of their microstructural features enabled to assess that the nature of the precursor and the temperature of pyrolysis are the major factors determining the carbon yield and the surface area, the latter one having a major effect on the electrochemical capacity. Finally, the presence of surface groups and physisorbed water can also play a role both on the maximum reversible capacity achievable (by influencing the interaction of sodium ions with the hard carbon surface) and the irreversible capacity. Phenolic resin combining high carbon yield (similar to 50%), tap density (0.7 g.cm(-3)) and reversible capacity (249 mAh/g) was found to be the precursor producing the most suitable hard carbon for practical use in Na-ion batteries. Cellulose can be a good candidate as well, the lower carbon yield being counterbalanced by its lower price and higher capacity (280 mAh/g). (C) The Author(s) 2018. Published by ECS.
引用
收藏
页码:A4058 / A4066
页数:9
相关论文
共 31 条
  • [1] [Anonymous], J CARBON RES
  • [2] [Anonymous], P ROY SOC
  • [3] Hard carbons derived from green phenolic resins for Na-ion batteries
    Beda, Adrian
    Taberna, Pierre-Louis
    Simon, Patrice
    Ghimbeu, Camelia Matei
    [J]. CARBON, 2018, 139 : 248 - 257
  • [4] Influence of graphite surface properties on the first electrochemical lithium intercalation
    Bernardo, Ph.
    Dentzer, J.
    Gadiou, R.
    Maerkle, W.
    Goers, D.
    Novak, P.
    Spahr, M. E.
    Vix-Guterl, C.
    [J]. CARBON, 2011, 49 (14) : 4867 - 4876
  • [5] Na-ion battery cathode materials prepared by electrochemical ion exchange from alumina-coated Li1+xMn0.54Co0.13Ni0.1+yO2
    Bublil, Shaul
    Fayena-Greenstein, Miryam
    Talyanker, Michael
    Solomatin, Nickolay
    Tsubery, Merav Nadav
    Bendikov, Tatyana
    Penki, Tirupathi Rao
    Grinblat, Judith
    Duran, Ignacio Borge
    Grinberg, Ilya
    Ein-Eli, Yair
    Elias, Yuval
    Hartmann, Pascal
    Aurbach, Doron
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (30) : 14816 - 14827
  • [6] Negative electrodes for Na-ion batteries
    Dahbi, Mouad
    Yabuuchi, Naoaki
    Kubota, Kei
    Tokiwa, Kazuyasu
    Komaba, Shinichi
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (29) : 15007 - 15028
  • [7] ELECTROCHEMICAL INSERTION OF SODIUM INTO CARBON
    DOEFF, MM
    MA, YP
    VISCO, SJ
    DEJONGHE, LC
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (12) : L169 - L170
  • [8] THE CONCEPT OF ACTIVE-SITES APPLIED TO THE STUDY OF CARBON REACTIVITY
    EHRBURGER, P
    LOUYS, F
    LAHAYE, J
    [J]. CARBON, 1989, 27 (03) : 389 - 393
  • [9] CHEMICALLY MODIFIED PTFE-CARBON AS A SOLID-STATE OXYGEN SENSOR ELECTRODE MATERIAL
    GE, P
    SIEBERT, E
    FOULETIER, M
    [J]. SOLID STATE IONICS, 1988, 28 : 1701 - 1704
  • [10] Insights on the Na+ ion storage mechanism in hard carbon: Discrimination between the porosity, surface functional groups and defects
    Ghimbeu, Camelia Matei
    Gorka, Joanna
    Simone, Virgine
    Simonin, Loic
    Martinet, Sebastien
    Vix-Guterl, Cathie
    [J]. NANO ENERGY, 2018, 44 : 327 - 335