Exponential stabilization of a class of nonlinear systems: A generalized Gronwall-Bellman lemma approach

被引:20
作者
N'Doye, Ibrahima [1 ,2 ,3 ]
Zasadzinski, Michel [1 ]
Darouach, Mohamed [1 ]
Radhy, Nour-Eddine [2 ]
Bouaziz, Abdelhaq [3 ]
机构
[1] Nancy Univ, Ctr Rech Automat Nancy, CNRS, CRAN,UMR 7039,IUT Longwy, F-54400 Cosnes Et Romain, France
[2] Univ Hassan 2, Fac Sci Ain Chock Casablanca, Lab Phys & Mat Microelect Automat & Therm LP2MAT, Casablanca 20100, Morocco
[3] Univ Hassan II Ain Chock, Ecole Super Technol Casablanca, Lab Mecan Prod & Genie Ind MPGI, Casablanca, Morocco
关键词
Nonlinear affine systems; Generalized Gronwall-Bellman lemma; Exponential stabilization; Static state feedback; Static output feedback; Robustness; STATIC OUTPUT-FEEDBACK; BILINEAR-SYSTEMS; STABILITY; DESIGN;
D O I
10.1016/j.na.2011.07.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, stabilizing control design for a class of nonlinear affine systems is presented by using a new generalized Gronwall-Bellman lemma approach. The nonlinear systems under consideration can be non Lipschitz. Two cases are treated for the exponential stabilization: the static state feedback and the static output feedback. The robustness of the proposed control laws with regards to parameter uncertainties is also studied. A numerical example is given to show the effectiveness of the proposed method. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7333 / 7341
页数:9
相关论文
共 35 条
[1]  
[Anonymous], 1991, NONLINEAR SYSTEMS AP
[2]   CHARACTERIZATION OF EQUILIBRIUM SETS FOR BILINEAR-SYSTEMS WITH FEEDBACK-CONTROL [J].
BENALLOU, A ;
MELLICHAMP, DA ;
SEBORG, DE .
AUTOMATICA, 1983, 19 (02) :183-189
[3]  
Boyd S., 1994, LINEAR MATRIX INEQUA
[4]   Static output feedback stabilization: An ILMI approach [J].
Cao, YY ;
Lam, J ;
Sun, YX .
AUTOMATICA, 1998, 34 (12) :1641-1645
[5]   Robust Linear Controller Design: Time Domain Approach [J].
Chen, Bor-Sen ;
Wong, Ching-Chang .
IEEE Transactions on Automatic Control, 1987, AC-32 (02) :161-164
[6]   Sufficient LMI conditions for output feedback control problems [J].
Crusius, CAR ;
Trofino, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (05) :1053-1057
[7]  
Debeljkovic D., 1999, P IEEE C DEC CONTR S
[8]  
Desoer C.A., 1975, ELECT SCI
[9]  
El Alami N., 1995, C INT EQ DIFF MARR M
[10]  
EL ALAMI N., 1986, THESIS U PERPIGNAN F