Heights on algebraic curves

被引:3
|
作者
Shaska, T. [1 ]
Beshaj, L. [1 ,2 ]
机构
[1] Oakland Univ, Rochester, MI 48063 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
来源
ADVANCES ON SUPERELLIPTIC CURVES AND THEIR APPLICATIONS | 2015年 / 41卷
关键词
algebraic curves; heights; moduli height;
D O I
10.3233/978-1-61499-520-3-137
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In these lectures we cover basics of the theory of heights starting with the heights in the projective space, heights of polynomials, and heights of the algebraic curves. We define the minimal height of binary forms and moduli height for algebraic curves and prove that the moduli height of superelliptic curves H(f) <= c(0)(H) over tilde (f) where c(0) is a constant and (H) over tilde the minimal height of the corresponding binary form. For genus g = 2 and 3 such constant is explicitly determined. Furthermore, complete lists of curves of genus 2 and genus 3 hyperelliptic curves with height 1 are computed.
引用
收藏
页码:137 / 175
页数:39
相关论文
共 50 条
  • [1] Heights and logarithmic gcd on algebraic curves
    Abouzaid, Mourad
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (02) : 177 - 197
  • [2] On heights of multiplicatively dependent algebraic numbers
    Stewart, C. L.
    ACTA ARITHMETICA, 2008, 133 (02) : 97 - 108
  • [3] On convolutions of algebraic curves
    Vrsek, Jan
    Lavicka, Miroslav
    JOURNAL OF SYMBOLIC COMPUTATION, 2010, 45 (06) : 657 - 676
  • [4] Heights and quantitative arithmetic on stacky curves
    Nasserden, Brett
    Xiao, Stanley Yao
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2025, 77 (02): : 481 - 534
  • [5] Integrable Deformations of Algebraic Curves
    Y. Kodama
    B. G. Konopelchenko
    L. Martinez Alonso
    Theoretical and Mathematical Physics, 2005, 144 : 961 - 967
  • [6] Reducibility of offsets to algebraic curves
    Vrsek, Jan
    Lavicka, Miroslav
    COMPUTER AIDED GEOMETRIC DESIGN, 2013, 30 (01) : 140 - 147
  • [7] Algebraic curves and the Gauss map of algebraic minimal surfaces
    Jin, Lu
    Ru, Min
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2007, 25 (06) : 701 - 712
  • [8] Fairness criteria for algebraic curves
    Chalmoviansky, P
    Jüttler, B
    COMPUTING, 2004, 72 (1-2) : 41 - 51
  • [9] Algebraic curves with many automorphisms
    Giulietti, Massimo
    Korchmaros, Gabor
    ADVANCES IN MATHEMATICS, 2019, 349 : 162 - 211
  • [10] Algebraic curves and maximal arcs
    A. Aguglia
    L. Giuzzi
    G. Korchmáros
    Journal of Algebraic Combinatorics, 2008, 28 : 531 - 544