Interface Engineering on Cellulose-Based Flexible Electrode Enables High Mass Loading Wearable Supercapacitor with Ultrahigh Capacitance and Energy Density

被引:33
作者
Chen, Ruwei [1 ]
Ling, Hao [1 ]
Huang, Quanbo [1 ]
Yang, Yang [1 ]
Wang, Xiaohui [1 ]
机构
[1] South China Univ Technol, State Key Lab Pulp & Paper Engn, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
cellulose electrodes; energy density; flexible supercapacitors; high mass loading; interface engineering; POROUS CARBON; POLYPYRROLE; PERFORMANCE; TORTUOSITY; NANOTUBES; TRANSPORT; OXIDE;
D O I
10.1002/smll.202106356
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For practical energy storage devices, a bottleneck is to retain decent integrated performances while increasing the mass loading of active materials to the commercial level, which highlights an urgent need for novel electrode structure design strategies. Here, an active nitrogen-doped carbon interface with "high conductivity, high porosity, and high electrolyte affinity" on a flexible cellulose electrode surface is engineered to accommodate 1D active materials. The high conductivity of interface favors fast electron transport, while its high porosity and high electrolyte affinity properties benefit ion migration. As a result, the flexible anode accommodated by carbon nanotubes achieves an ultrahigh capacitance of 9501 mF cm(-2) (315.6 F g(-1)) at a high mass loading of 30.1 mg cm(-2), and the flexible cathode accommodated by polypyrrole nanotubes realizes a remarkably high capacitance of 6212 mF cm(-2) (248 F g(-1), 25 mg cm(-2)). The assembled flexible quasi-solid-state asymmetric supercapacitor delivers a maximum energy density of 1.42 mWh cm(-2) (2.2 V, 2105 mF cm(-2)), representing the highest value among all reported flexible supercapacitors. This versatile design concept provides a new way to prepare high performance flexible energy storage devices.
引用
收藏
页数:8
相关论文
共 64 条
[1]   Investigation of ion transport in chemically tuned pillared graphene materials through electrochemical impedance analysis [J].
Banda, Harish ;
Perie, Sandy ;
Daffos, Barbara ;
Dubois, Lionel ;
Crosnier, Olivier ;
Simon, Patrice ;
Taberna, Pierre-Louis ;
Duclairoir, Florence .
ELECTROCHIMICA ACTA, 2019, 296 :882-890
[2]   Hierarchical Porous Carbon Derived from Covalent Triazine Frameworks for High Mass Loading Supercapacitors [J].
Baumann, Daniel ;
Lee, Chain ;
Wan, Chengzhang ;
Sun, Hongtao ;
Duan, Xiangfeng .
ACS MATERIALS LETTERS, 2019, 1 (03) :320-326
[3]   Electrochemical deposition of highly loaded polypyrrole on individual carbon nanotubes in carbon nanotube film for supercapacitor [J].
Chang, Zhi-Han ;
Feng, Dong-Yang ;
Huang, Zi-Hang ;
Liu, Xiao-Xia .
CHEMICAL ENGINEERING JOURNAL, 2018, 337 :552-559
[4]  
Chen CJ, 2017, ENERG ENVIRON SCI, V10, P538, DOI [10.1039/C6EE03716J, 10.1039/c6ee03716j]
[5]   Self-assembled porous biomass carbon/RGO/nanocellulose hybrid aerogels for self-supporting supercapacitor electrodes [J].
Chen, Ruwei ;
Li, Xinsheng ;
Huang, Quanbo ;
Ling, Hao ;
Yang, Yang ;
Wang, Xiaohui .
CHEMICAL ENGINEERING JOURNAL, 2021, 412
[6]   A multifunctional interface design on cellulose substrate enables high performance flexible all-solid-state supercapacitors [J].
Chen, Ruwei ;
Yang, Yang ;
Huang, Quanbo ;
Ling, Hao ;
Li, Xinsheng ;
Ren, Junli ;
Zhang, Kai ;
Sun, Runcang ;
Wang, Xiaohui .
ENERGY STORAGE MATERIALS, 2020, 32 :208-215
[7]   Interlayer Structure Engineering of MXene-Based Capacitor-Type Electrode for Hybrid Micro-Supercapacitor toward Battery-Level Energy Density [J].
Cheng, Wenxiang ;
Fu, Jimin ;
Hu, Haibo ;
Ho, Derek .
ADVANCED SCIENCE, 2021, 8 (16)
[8]   Insights on Flexible Zinc-Ion Batteries from Lab Research to Commercialization [J].
Dong, Haobo ;
Li, Jianwei ;
Guo, Jian ;
Lai, Feili ;
Zhao, Fangjia ;
Jiao, Yiding ;
Brett, Dan J. L. ;
Liu, Tianxi ;
He, Guanjie ;
Parkin, Ivan P. .
ADVANCED MATERIALS, 2021, 33 (20)
[9]   Carbon materials for high mass-loading supercapacitors: filling the gap between new materials and practical applications [J].
Dong, Yue ;
Zhu, Jiayao ;
Li, Qiqi ;
Zhang, Su ;
Song, Huaihe ;
Jia, Dianzeng .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (42) :21930-21946
[10]   Boosting the Electrical Double-Layer Capacitance of Graphene by Self-Doped Defects through Ball-Milling [J].
Dong, Yue ;
Zhang, Su ;
Du, Xian ;
Hong, Song ;
Zhao, Shengna ;
Chen, Yaxin ;
Chen, Xiaohong ;
Song, Huaihe .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (24)