Impact of Inaccurate Documentation of Sampling and Infusion Time in Model-Informed Precision Dosing

被引:32
作者
Alihodzic, Dzenefa [1 ,2 ]
Broeker, Astrid [2 ]
Baehr, Michael [1 ]
Kluge, Stefan [3 ]
Langebrake, Claudia [1 ,4 ]
Wicha, Sebastian Georg [2 ]
机构
[1] Univ Med Ctr Hamburg Eppendorf, Dept Hosp Pharm, Hamburg, Germany
[2] Univ Hamburg, Inst Pharm, Dept Clin Pharm, Hamburg, Germany
[3] Univ Med Ctr Hamburg Eppendorf, Dept Intens Care Med, Hamburg, Germany
[4] Univ Med Ctr Hamburg Eppendorf, Dept Stem Cell Transplantat, Hamburg, Germany
来源
FRONTIERS IN PHARMACOLOGY | 2020年 / 11卷
关键词
documentation; sampling time; infusion rate; uncertainty; precision dosing; therapeutic drug monitoring; meropenem; caspofungin; PHARMACOKINETIC MODELS;
D O I
10.3389/fphar.2020.00172
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background Routine clinical TDM data is often used to develop population pharmacokinetic (PK) models, which are applied in turn for model-informed precision dosing. The impact of uncertainty in documented sampling and infusion times in population PK modeling and model-informed precision dosing have not yet been systematically evaluated. The aim of this study was to investigate uncertain documentation of (i) sampling times and (ii) infusion rate exemplified with two anti-infectives. Methods A stochastic simulation and estimation study was performed in NONMEM (R) using previously published population PK models of meropenem and caspofungin. Uncertainties, i.e. deviation between accurate and planned sampling and infusion times (standard deviation (SD) +/- 5 min to +/- 30 min) were added randomly in R before carrying out the simulation step. The estimation step was then performed with the accurate or planned times (replacing real time points by scheduled study values). Relative bias (rBias) and root mean squared error (rRMSE) were calculated to determine accuracy and precision of the primary and secondary PK parameters on the population and individual level. The accurate and the misspecified (using planned sampling times) model were used for Bayesian forecasting of meropenem to assess the impact on PK/PD target calculations relevant to dosing decisions. Results On the population level, the estimates of the proportional residual error (prop.-err.) and the interindividual variability (IIV) on the central volume of distribution (V1) were most affected by erroneous records in the sampling and infusion time (e.g. rBias of prop.-err.: 75.5% vs. 183% (meropenem) and 10.1% vs. 109% (caspofungin) for +/- 5 vs. +/- 30 min, respectively). On the individual level, the rBias of the planned scenario for the typical values V1, Q and V2 increased with increasing uncertainty in time, while CL, AUC and elimination half-life were least affected. Meropenem as a short half-life drug (1 h) was more affected than caspofungin ( 9-11 h). The misspecified model provided biased PK/PD target information (e.g. falsely overestimated time above MIC (T > MIC) when true T > MIC was <0.4 and thus patients at risk of undertreatment), while the accurate model gave precise estimates of the indices across all simulated patients. Conclusions Even 5-minute-uncertainties caused bias and significant imprecision of primary population and individual PK parameters. Thus, our results underline the importance of accurate documentation of time.
引用
收藏
页数:12
相关论文
共 46 条
  • [31] A multicentric, randomized, controlled clinical trial to study the impact of bedside model-informed precision dosing of vancomycin in critically ill children-BENEFICIAL trial
    De Cock, Pieter A.
    Colman, Roos
    Amza, Anca
    De Paepe, Peter
    De Pla, Hans
    Vanlanduyt, Lieselot
    Van der Linden, Dimitri
    TRIALS, 2024, 25 (01)
  • [32] Model-informed precision dosing of beta-lactam antibiotics and ciprofloxacin in critically ill patients: a multicentre randomised clinical trial
    Ewoldt, Tim M. J.
    Abdulla, Alan
    Rietdijk, Wim J. R.
    Muller, Anouk E.
    de Winter, Brenda C. M.
    Hunfeld, Nicole G. M.
    Purmer, Ilse M.
    van Vliet, Peter
    Wils, Evert-Jan
    Haringman, Jasper
    Draisma, Annelies
    Rijpstra, Tom A.
    Karakus, Attila
    Gommers, Diederik
    Endeman, Henrik
    Koch, Birgit C. P.
    INTENSIVE CARE MEDICINE, 2022, 48 (12) : 1760 - 1771
  • [33] Model-informed precision dosing of beta-lactam antibiotics and ciprofloxacin in critically ill patients: a multicentre randomised clinical trial
    Tim M. J. Ewoldt
    Alan Abdulla
    Wim J. R. Rietdijk
    Anouk E. Muller
    Brenda C. M. de Winter
    Nicole G. M. Hunfeld
    Ilse M. Purmer
    Peter van Vliet
    Evert-Jan Wils
    Jasper Haringman
    Annelies Draisma
    Tom A. Rijpstra
    Attila Karakus
    Diederik Gommers
    Henrik Endeman
    Birgit C. P. Koch
    Intensive Care Medicine, 2022, 48 : 1760 - 1771
  • [34] Impact of continuous-infusion meropenem degradation and infusion bag changes on bacterial killing of Pseudomonas aeruginosa based on model-informed translation
    Minichmayr, Iris K.
    Friberg, Lena E.
    INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2024, 64 (02)
  • [35] Model-Informed Precision Dosing during Infliximab Induction Therapy Reduces Variability in Exposure and Endoscopic Improvement between Patients with Ulcerative Colitis
    Faelens, Ruben
    Wang, Zhigang
    Bouillon, Thomas
    Declerck, Paul
    Ferrante, Marc
    Vermeire, Severine
    Dreesen, Erwin
    PHARMACEUTICS, 2021, 13 (10)
  • [36] Towards model-informed precision dosing of piperacillin: multicenter systematic external evaluation of pharmacokinetic models in critically ill adults with a focus on Bayesian forecasting
    Sebastian Greppmair
    Alexander Brinkmann
    Anka Roehr
    Otto Frey
    Stefan Hagel
    Christoph Dorn
    Amélie Marsot
    Ibrahim El-Haffaf
    Michael Zoller
    Thomas Saller
    Johannes Zander
    Lea Marie Schatz
    Christina Scharf
    Josef Briegel
    Iris K. Minichmayr
    Sebastian G. Wicha
    Uwe Liebchen
    Intensive Care Medicine, 2023, 49 : 966 - 976
  • [37] Development of a Model-Informed Dosing Tool to Optimise Initial Antibiotic Dosing-A Translational Example for Intensive Care Units
    Weinelt, Ferdinand Anton
    Stegemann, Miriam Songa
    Theloe, Anja
    Pfaefflin, Frieder
    Achterberg, Stephan
    Schmitt, Lisa
    Huisinga, Wilhelm
    Michelet, Robin
    Hennig, Stefanie
    Kloft, Charlotte
    PHARMACEUTICS, 2021, 13 (12)
  • [38] Towards model-informed precision dosing of piperacillin: multicenter systematic external evaluation of pharmacokinetic models in critically ill adults with a focus on Bayesian forecasting
    Greppmair, Sebastian
    Brinkmann, Alexander
    Roehr, Anka
    Frey, Otto
    Hagel, Stefan
    Dorn, Christoph
    Marsot, Amelie
    El-Haffaf, Ibrahim
    Zoller, Michael
    Saller, Thomas
    Zander, Johannes
    Schatz, Lea Marie
    Scharf, Christina
    Briegel, Josef
    Minichmayr, Iris K.
    Wicha, Sebastian G.
    Liebchen, Uwe
    INTENSIVE CARE MEDICINE, 2023, 49 (08) : 966 - 976
  • [39] Feasibility of a Pragmatic PBPK Modeling Approach: Towards Model-Informed Dosing in Pediatric Clinical Care
    van der Heijden, Joyce E. M.
    Freriksen, Jolien J. M.
    De Hoop-Sommen, Marika A.
    van Bussel, Lianne P. M.
    Driessen, Sander H. P.
    Orlebeke, Anne E. M.
    Verscheijden, Laurens F. M.
    Greupink, Rick
    de Wildt, Saskia N.
    CLINICAL PHARMACOKINETICS, 2022, 61 (12) : 1705 - 1717
  • [40] Benchmarking the posologyr R package, a free software for model-informed precision dosing: Extensive validation of maximum a posteriori estimates of pharmacokinetic parameters against NONMEM
    Mane, C.
    Coste, A.
    Leven, C.
    FUNDAMENTAL & CLINICAL PHARMACOLOGY, 2022, 36 : 58 - 58