stroke;
cortical stimulation;
motor cortex;
skilled behavior;
recovery;
compensation;
D O I:
10.1179/016164103771953871
中图分类号:
R74 [神经病学与精神病学];
学科分类号:
摘要:
Improving functional recovery following cerebral strokes in humans will likely involve augmenting brain plasticity. This study examined skilled forelimb behavior, neocortical evoked potentials, and movement thresholds to assess cortical electrical stimulation concurrent with rehabilitative forelimb usage following a focal ischemic insult. Adult rats were trained on a task that required skilled usage of both forelimbs. They then underwent an acute focal ischemic insult to the caudal forelimb area of sensorimotor cortex contralateral to their preferred forelimb. During the same procedure, they also received a stimulation electrode over the infarct area and two depth electrodes anterior to the lesion to record evoked potentials. One week following the surgery, rats received cortical stimulation during performance of the skilled task. Evoked potentials and movement thresholds were also determined. Functional assessment revealed that cortical stimulation resulted in superior performance compared to the no stimulation group, and this was initially due to a shift in forelimb preference. Cortical stimulation also resulted in enhanced evoked potentials and a reduction in the amount of current required to elicit a movement, in a stimulation frequency dependent manner. This study suggests that cortical stimulation, concurrent with rehabilitative training, results in better forelimb usage that may be due to augmented synaptic plasticity.