Dimension of the global attractor for discretization of damped Sine-Gordon equation

被引:6
作者
Zhou, SF [1 ]
机构
[1] Sichuan Union Univ, Dept Math, Chengdu 610064, Peoples R China
关键词
Sine-Gordon equation; finite difference; global attractor; Hausdorff dimension;
D O I
10.1016/S0893-9659(98)00132-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A more precise estimate on the dimension of the global attractor for discretization of damped sine-Gordon equation with the periodic boundary condition is obtained. The gained Hausdorff dimension remains small for large damping and is independent of the mesh sizes. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:95 / 100
页数:6
相关论文
共 50 条
[41]   SOLUTIONS OF THE SINE-GORDON EQUATION WITH A VARIABLE AMPLITUDE [J].
Aero, E. L. ;
Bulygin, A. N. ;
Pavlov, Yu. V. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 184 (01) :961-972
[42]   Identification problems of damped sine-Gordon equations with constant parameters [J].
Ha, JH ;
Nakagiri, S .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2002, 39 (04) :509-524
[43]   Rogue periodic waves of the sine-Gordon equation [J].
Li, Ruomeng ;
Geng, Xianguo .
APPLIED MATHEMATICS LETTERS, 2020, 102
[44]   Perturbed soliton solutions of the sine-Gordon equation [J].
Popov, S. P. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2009, 49 (12) :2085-2091
[45]   Nonlocal topological solitons of the sine-Gordon equation [J].
Tang, Xiao-yan ;
Liang, Zu-feng ;
Wang, Jian-yong .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (28)
[46]   Solitary waves of a perturbed sine-Gordon equation [J].
Hua, CC ;
Liu, YZ .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 37 (01) :21-26
[47]   Negaton and complexiton solutions of sine-Gordon equation [J].
Wu, Hongxia ;
Fan, Tianyou .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (02) :471-482
[48]   Breather dynamics in the perturbed sine-Gordon equation [J].
Tu, T ;
Cheng, G .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2003, 40 (04) :390-392
[49]   Soliton asymptotics of solutions of the sine-gordon equation [J].
Kirsch W. .
Mathematical Physics, Analysis and Geometry, 1999, 2 (1) :25-51
[50]   Boundary Energy Control of the Sine-Gordon Equation [J].
Dolgopolik, Maksim ;
Fradkov, Alexander L. ;
Andrievsky, Boris .
IFAC PAPERSONLINE, 2016, 49 (14) :148-153