Dimension of the global attractor for discretization of damped Sine-Gordon equation

被引:6
作者
Zhou, SF [1 ]
机构
[1] Sichuan Union Univ, Dept Math, Chengdu 610064, Peoples R China
关键词
Sine-Gordon equation; finite difference; global attractor; Hausdorff dimension;
D O I
10.1016/S0893-9659(98)00132-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A more precise estimate on the dimension of the global attractor for discretization of damped sine-Gordon equation with the periodic boundary condition is obtained. The gained Hausdorff dimension remains small for large damping and is independent of the mesh sizes. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:95 / 100
页数:6
相关论文
共 50 条
[32]   Attractor and dimension for strongly damped nonlinear wave equation [J].
Zhou Shengfan .
Acta Mathematicae Applicatae Sinica, 2000, 16 (3) :266-273
[33]   Dimension of the global attractor for damped nonlinear wave equations [J].
Zhou, SF .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (12) :3623-3631
[34]   SOLUTIONS OF THE SINE-GORDON EQUATION WITH A VARIABLE AMPLITUDE [J].
Aero, E. L. ;
Bulygin, A. N. ;
Pavlov, Yu. V. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 184 (01) :961-972
[35]   Discrete singular convolution for the sine-Gordon equation [J].
Wei, GW .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 137 (3-4) :247-259
[36]   Perturbed soliton solutions of the sine-Gordon equation [J].
S. P. Popov .
Computational Mathematics and Mathematical Physics, 2009, 49 :2085-2091
[37]   Numerical inverse scattering for the sine-Gordon equation [J].
Deconinck, Bernard ;
Trogdon, Thomas ;
Yang, Xin .
PHYSICA D-NONLINEAR PHENOMENA, 2019, 399 :159-172
[38]   Solutions of the sine-Gordon equation with a variable amplitude [J].
E. L. Aero ;
A. N. Bulygin ;
Yu. V. Pavlov .
Theoretical and Mathematical Physics, 2015, 184 :961-972
[39]   KINK AND ANTIKINK SOLITONS ON SINE-GORDON EQUATION [J].
Segovia Chaves, Francis Armando .
REDES DE INGENIERIA-ROMPIENDO LAS BARRERAS DEL CONOCIMIENTO, 2012, 3 (01) :6-11
[40]   Pade numerical schemes for the sine-Gordon equation [J].
Martin-Vergara, Francisca ;
Rus, Francisco ;
Villatoro, Francisco R. .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 358 :232-243