AFFINE PROCESSES ON POSITIVE SEMIDEFINITE MATRICES

被引:99
作者
Cuchiero, Christa [1 ]
Filipovic, Damir [2 ]
Mayerhofer, Eberhard [3 ]
Teichmann, Josef [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, CH-8092 Zurich, Switzerland
[2] Ecole Polytech Fed Lausanne, Swiss Finance Inst, CH-1015 Lausanne, Switzerland
[3] Vienna Inst Finance, A-1190 Vienna, Austria
基金
奥地利科学基金会;
关键词
Affine processes; Wishart processes; stochastic volatility; stochastic invariance; INVARIANCE; VOLATILITY;
D O I
10.1214/10-AAP710
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article provides the mathematical foundation for stochastically continuous affine processes on the cone of positive semidefinite symmetric matrices. This analysis has been motivated by a large and growing use of matrix-valued affine processes in finance, including multi-asset option pricing with stochastic volatility and correlation structures, and fixed-income models with stochastically correlated risk factors and default intensities.
引用
收藏
页码:397 / 463
页数:67
相关论文
共 52 条
[1]  
Aczel J., 1989, ENCY MATH ITS APPL, V31
[2]  
[Anonymous], 1999, CAMBRIDGE STUD ADV M
[3]  
[Anonymous], CORRELATION RISK TER
[4]  
[Anonymous], 1991, Mathematics and its Applications (Soviet Series)
[5]  
[Anonymous], 1996, PRINCETON MATH SER
[6]  
[Anonymous], 2008, INTRO STOCHASTIC CAL
[7]  
[Anonymous], 1991, CONTINUOUS MARTINGAL, DOI DOI 10.1007/978-3-662-21726-9
[8]  
[Anonymous], 2003, LIMIT THEOREMS STOCH, DOI DOI 10.1007/978-3-662-05265-5
[9]  
Barndorff-Nielsen O.E., 2007, Probab. Math. Statist., V27, P3
[10]  
Barndorff-Nielsen OE, 2001, LEVY PROCESSES: THEORY AND APPLICATIONS, P283