Noncommutative complete intersections

被引:16
作者
Kirkman, E. [1 ]
Kuzmanovich, J. [1 ]
Zhang, J. J. [2 ]
机构
[1] Wake Forest Univ, Dept Math, Winston Salem, NC 27109 USA
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
基金
美国国家科学基金会; 芬兰科学院;
关键词
Artin-Schelter regular algebra; Complete intersection; Group action; Gorenstein; Hilbert series; Quasi-bireflection; FINITE-GROUPS; QUOTIENT SINGULARITIES; INVARIANTS; DIMENSION; ALGEBRAS; HOMOLOGY; RINGS; COHOMOLOGY;
D O I
10.1016/j.jalgebra.2014.12.046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Several generalizations of a commutative ring that is a graded complete intersection are proposed for a noncommutative graded k-algebra; these notions are justified by examples from noncommutative invariant theory. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:253 / 286
页数:34
相关论文
共 59 条
  • [1] DERIVATIONS AND SUTOMORPHISMS OF SOME QUANTUM ALGEBRAS
    ALEV, J
    CHAMARIE, M
    [J]. COMMUNICATIONS IN ALGEBRA, 1992, 20 (06) : 1787 - 1802
  • [2] [Anonymous], 2000, Grad. Stud. Math.
  • [3] NONCOMMUTATIVE PROJECTIVE SCHEMES
    ARTIN, M
    ZHANG, JJ
    [J]. ADVANCES IN MATHEMATICS, 1994, 109 (02) : 228 - 287
  • [4] Artin M., 1990, The Grothendieck Festschrift, VI, P33
  • [5] Bass H., 1963, MATH Z, V82, P8, DOI DOI 10.1007/BF01112819
  • [6] Benson D., 2013, ARXIV13085262
  • [7] Benson D.J., 2009, ARXIV09064025
  • [8] BENSON DJ, 1993, LONDON MATH SOC LECT, V190
  • [9] Berest Y., 2013, ARXIV13045314
  • [10] Homology and cohomology of quantum complete intersections
    Bergh, Petter Andreas
    Erdmann, Karin
    [J]. ALGEBRA & NUMBER THEORY, 2008, 2 (05) : 501 - 522