Modelling the thermal behaviour of the Low-Thermal Mass Liquid Chromatography system

被引:19
|
作者
Verstraeten, Matthias [1 ]
Pursch, Matthias [2 ]
Eckerle, Patric [2 ]
Luong, Jim [3 ]
Desmet, Gert [1 ]
机构
[1] Vrije Univ Brussel, Dept Chem Engn, B-1050 Brussels, Belgium
[2] Dow Deutschland GmbH, Analyt Technol, D-77836 Rheinmunster, Germany
[3] Dow Canada, Analyt Technol, Ft Saskatchewan, AB, Canada
关键词
Temperature; Temperature programming; Low-Thermal Mass LC; Heat transfer; Band broadening; Mobile phase pre-heating; HIGH-TEMPERATURE; ELEVATED-TEMPERATURE; COLUMN TEMPERATURE; GRADIENT ELUTION; KINETIC PLOT; MU-M; PERFORMANCE; PRESSURE; SEPARATION; DEPENDENCE;
D O I
10.1016/j.chroma.2011.02.023
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We report upon the experimental investigation of the heat transfer in low thermal mass LC (LTMLC) systems, used under temperature gradient conditions. The influence of the temperature ramp, the capillary dimensions, the material selection and the chromatographic conditions on the radial temperature gradients formed when applying a temperature ramp were investigated by a numerical model and verified with experimental temperature measurements. It was found that the radial temperature gradients scale linearly with the heating rate, quadratically with the radius of the capillary and inversely to the thermal diffusivity. Because of the thermal radial gradients in the liquid zone inside the capillary lead to radial viscosity and velocity gradients, they form an additional source of dispersion for the solutes. For a temperature ramp of 1 K/s and a strong temperature dependence of the retention of small molecules, the model predicts that narrow-bore columns (i.d. 2.1 mm) can be used. For a temperature ramp of 10 K/s, the maximal inner diameter is of the order of 1 mm before a substantial increase in dispersion occurs. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2252 / 2263
页数:12
相关论文
共 50 条
  • [41] THERMAL CONDUCTIVITY DETECTION IN LIQUID CHROMATOGRAPHY
    OHZEKI, K
    KAMBARA, T
    SAITOH, K
    JOURNAL OF CHROMATOGRAPHY, 1968, 38 (03): : 393 - &
  • [42] Thermal effects in reactive liquid chromatography
    Sainio, T.
    Kaspereit, M.
    Kienle, A.
    Seidel-Morgenstern, A.
    CHEMICAL ENGINEERING SCIENCE, 2007, 62 (18-20) : 5674 - 5681
  • [43] Low-thermal expansion electrostatic chuck materials and clamp mechanisms in vacuum and air
    van Elp, J
    Giesen, PTM
    de Groof, AMM
    MICROELECTRONIC ENGINEERING, 2004, 73-4 : 941 - 947
  • [44] Modelling of retention behaviour of solutes in micellar liquid chromatography
    GarciaAlvarezCoque, MC
    TorresLapasio, JR
    BaezaBaeza, JJ
    JOURNAL OF CHROMATOGRAPHY A, 1997, 780 (1-2) : 129 - 148
  • [45] Thermal behaviour modelling of superplastic forming tools
    Velay, V.
    Cutard, T.
    Guegan, N.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2012, 43 (09) : 799 - 804
  • [46] Modelling of thermal behaviour of a fabric coated with nanocomposites
    Abid K.
    Dhouib S.
    Sakli F.
    Journal of Applied Sciences, 2010, 10 (01) : 71 - 74
  • [47] Thermal behaviour of rock mass around openings subjected to thermal hysteresis due to storage of low temperature materials
    Inada, Y
    Kinoshita, N
    Kohmura, Y
    Takata, M
    SITE CHARACTERISATION PRACTICE, 2000, : 313 - 318
  • [48] Modelling of the Thermal Behaviour of Free Form Extrusion
    Costa, S. F.
    Duarte, F. M.
    Coves, J. A.
    ADVANCED MATERIALS FORUM V, PT 1 AND 2, 2010, 636-637 : 833 - 839
  • [49] Modelling the mechanical thermal expression behaviour of lignite
    Wheeler, R. A.
    Hoadley, A. F. A.
    Clayton, S. A.
    FUEL, 2009, 88 (09) : 1741 - 1751
  • [50] Modeling of thermal processes in high pressure liquid chromatography I. Low pressure onset of thermal heterogeneity
    Kaczmarski, Krzysztof
    Kostka, Joanna
    Zapala, Wojciech
    Guiochon, Georges
    JOURNAL OF CHROMATOGRAPHY A, 2009, 1216 (38) : 6560 - 6574