Blind separation of signals with mixed kurtosis signs using threshold activation functions

被引:7
作者
Mathis, H [1 ]
von Hoff, TP [1 ]
Joho, M [1 ]
机构
[1] Swiss Fed Inst Technol, Signal & Informat Proc Lab, Swiss Fed Inst Technol, Zurich, Switzerland
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2001年 / 12卷 / 03期
关键词
adaptive activation function; blind separation; mixed kurtosis; threshold function;
D O I
10.1109/72.925565
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A parameterized activation function in the form of an adaptive threshold for a single-layer neural network, which separates a mixture of signals with any distribution (except for Gaussian), is introduced. This activation function is particularly simple to implement, since it neither uses hyperbolic nor polynomial functions, unlike most other nonlinear functions used for blind separation. For some specific distributions, the stable region of the threshold parameter is derived, and optimal values for best separation performance are given. If the threshold parameter is made adaptive during the separation process, the successful separation of signals whose distribution is unknown is demonstrated and compared against other known methods.
引用
收藏
页码:618 / 624
页数:7
相关论文
共 14 条
  • [1] Amari S, 1996, ADV NEUR IN, V8, P757
  • [2] Stability analysis of learning algorithms for blind source separation
    Amari, S
    Chen, TP
    Cichocki, A
    [J]. NEURAL NETWORKS, 1997, 10 (08) : 1345 - 1351
  • [3] Bronshtein IN., 2013, Handbook of Mathematics
  • [4] Equivariant adaptive source separation
    Cardoso, JF
    Laheld, BH
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (12) : 3017 - 3030
  • [5] Flexible independent component analysis
    Choi, S
    Cichocki, A
    Amari, S
    [J]. NEURAL NETWORKS FOR SIGNAL PROCESSING VIII, 1998, : 83 - 92
  • [6] CICHOCKI A, 1997, P 1997 INT S NONL TH, V2, P731
  • [7] Self-stabilized gradient algorithms for blind source separation with orthogonality constraints
    Douglas, SC
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (06): : 1490 - 1497
  • [8] DOUGLAS SC, 1997, P IEEE WORKSH NEUR N, P436
  • [9] JOHO M, 1999, P ISCAS ORL FLOR MAY, P203
  • [10] Lambert RH, 1996, THESIS U SO CALIFORN