Stein's idea and minimax admissible estimation of a multivariate normal mean

被引:8
作者
Maruyama, Y [1 ]
机构
[1] Univ Tokyo, Fac Econ, Ctr Spatial Informat Sci, Bunkyo Ku, Tokyo 1130033, Japan
关键词
admissible; minimax; the James-Stein estimator; estimation of a multivariate normal mean; the Stein phenomenon;
D O I
10.1016/S0047-259X(03)00097-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider estimation of a multivariate normal mean vector under sum of squared error loss. We propose a new class of minimax admissible estimator which are generalized Bayes with respect to a prior distribution which is a mixture of a point prior at the origin and a continuous hierarchical type prior. We also study conditions under which these generalized Bayes minimax estimators improve on the James-Stein estimator and on the positive-part James-Stein estimator. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:320 / 334
页数:15
相关论文
共 18 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]   FAMILY OF ADMISSIBLE MINIMAX ESTIMATORS OF MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION [J].
ALAM, K .
ANNALS OF STATISTICS, 1973, 1 (03) :517-525
[3]  
[Anonymous], 1946, PRINCETON MATH SERIE
[4]  
BARANCHIK AJ, 1964, 51 STANF U
[5]   ADMISSIBLE MINIMAX ESTIMATION OF A MULTIVARIATE NORMAL MEAN WITH ARBITRARY QUADRATIC LOSS [J].
BERGER, JO .
ANNALS OF STATISTICS, 1976, 4 (01) :223-226
[6]   TAIL MINIMAXITY IN LOCATION VECTOR PROBLEMS AND ITS APPLICATIONS [J].
BERGER, JO .
ANNALS OF STATISTICS, 1976, 4 (01) :33-50
[7]   ADMISSIBLE ESTIMATORS, RECURRENT DIFFUSIONS, AND INSOLUBLE BOUNDARY VALUE PROBLEMS [J].
BROWN, LD .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (03) :855-&
[8]   FAMILIES OF MINIMAX ESTIMATORS OF MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION [J].
EFRON, B ;
MORRIS, C .
ANNALS OF STATISTICS, 1976, 4 (01) :11-21
[9]   MINIMAX BAYES ESTIMATORS OF A MULTIVARIATE NORMAL MEAN [J].
FAITH, RE .
JOURNAL OF MULTIVARIATE ANALYSIS, 1978, 8 (03) :372-379
[10]  
Fourdrinier D, 1998, ANN STAT, V26, P660