Deep Low-Density Separation for Semi-supervised Classification

被引:2
作者
Burkhart, Michael C. [1 ]
Shan, Kyle [2 ]
机构
[1] Adobe Inc, San Jose, CA 95110 USA
[2] Stanford Univ, Stanford, CA 94305 USA
来源
COMPUTATIONAL SCIENCE - ICCS 2020, PT III | 2020年 / 12139卷
关键词
Semi-supervised learning; Low-density separation; Deep learning; User classification from survey data;
D O I
10.1007/978-3-030-50420-5_22
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Given a small set of labeled data and a large set of unlabeled data, semi-supervised learning (ssL) attempts to leverage the location of the unlabeled datapoints in order to create a better classifier than could be obtained from supervised methods applied to the labeled training set alone. Effective SSL imposes structural assumptions on the data, e.g. that neighbors are more likely to share a classification or that the decision boundary lies in an area of low density. For complex and high-dimensional data, neural networks can learn feature embeddings to which traditional SSL methods can then be applied in what we call hybrid methods. Previously-developed hybrid methods iterate between refining a latent representation and performing graph-based SSL on this representation. In this paper, we introduce a novel hybrid method that instead applies low-density separation to the embedded features. We describe it in detail and discuss why low-density separation may better suited for SSL on neural network-based embeddings than graph-based algorithms. We validate our method using in-house customer survey data and compare it to other state-of-the-art learning methods. Our approach effectively classifies thousands of unlabeled users from a relatively small number of hand-classified examples.
引用
收藏
页码:297 / 311
页数:15
相关论文
共 50 条
  • [31] Semi-supervised robust deep neural networks for multi-label image classification
    Cevikalp, Hakan
    Benligiray, Burak
    Gerek, Omer Nezih
    PATTERN RECOGNITION, 2020, 100
  • [32] A semi-supervised deep learning approach for vessel trajectory classification based on AIS data
    Duan, Hongda
    Ma, Fei
    Miao, Lixin
    Zhang, Canrong
    OCEAN & COASTAL MANAGEMENT, 2022, 218
  • [33] Deep learning model construction for a semi-supervised classification with feature learning
    Mandapati, Sridhar
    Kadry, Seifedine
    Kumar, R. Lakshmana
    Sutham, Krongkarn
    Thinnukool, Orawit
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (03) : 3011 - 3021
  • [34] Deep learning model construction for a semi-supervised classification with feature learning
    Sridhar Mandapati
    Seifedine Kadry
    R. Lakshmana Kumar
    Krongkarn Sutham
    Orawit Thinnukool
    Complex & Intelligent Systems, 2023, 9 : 3011 - 3021
  • [35] FeO Content Classification of Sinter Based on Semi-Supervised Deep Learning
    Ding, Qian
    Li, Zongping
    Zhao, Liming
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 640 - 644
  • [36] Semi-Supervised Medical Image Classification Combined with Unsupervised Deep Clustering
    Xiao, Bang
    Lu, Chunyue
    APPLIED SCIENCES-BASEL, 2023, 13 (09):
  • [37] Semi-Supervised Deep Coupled Ensemble Learning With Classification Landmark Exploration
    Li, Jichang
    Wu, Si
    Liu, Cheng
    Yu, Zhiwen
    Wong, Hau-San
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 538 - 550
  • [38] Semi-supervised Deep Convolutional Transform Learning for Hyperspectral Image Classification
    Singh, Shikha
    Majumdar, Angshul
    Chouzenoux, Emilie
    Chierchia, Giovanni
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 206 - 210
  • [39] Semi-supervised deep rule-based approach for image classification
    Gu, Xiaowei
    Angelov, Plamen P.
    APPLIED SOFT COMPUTING, 2018, 68 : 53 - 68
  • [40] Augmentation Learning for Semi-Supervised Classification
    Frommknecht, Tim
    Zipf, Pedro Alves
    Fan, Quanfu
    Shvetsova, Nina
    Kuehne, Hilde
    PATTERN RECOGNITION, DAGM GCPR 2022, 2022, 13485 : 85 - 98