An artificial intelligence approach for predicting cardiotoxicity in breast cancer patients receiving anthracycline

被引:19
作者
Chang, Wei-Ting [1 ,2 ,3 ]
Liu, Chung-Feng [4 ]
Feng, Yin-Hsun [5 ]
Liao, Chia-Te [1 ,6 ,7 ]
Wang, Jhi-Joung [4 ]
Chen, Zhih-Cherng [1 ]
Lee, Hsiang-Chun [8 ,9 ]
Shih, Jhih-Yuan [1 ,10 ]
机构
[1] Chi Mei Med Ctr, Dept Internal Med, Div Cardiol, Zhonghua Rd,Yongkang Dist 901, Tainan, Taiwan
[2] Southern Taiwan Univ Sci & Technol, Dept Biotechnol, Tainan, Taiwan
[3] Natl Cheng Kung Univ, Coll Med, Inst Clin Med, Tainan, Taiwan
[4] Chi Mei Med Ctr, Dept Med Res, Tainan, Taiwan
[5] Chi Mei Med Ctr, Dept Internal Med, Div Oncol, Tainan, Taiwan
[6] Katholieke Univ Leuven, Studies Coordinating Ctr, Res Unit Hypertens & Cardiovasc Epidemiol, Dept Cardiovasc Sci,Univ Leuven, Leuven, Belgium
[7] Natl Cheng Kung Univ, Coll Med, Dept Publ Hlth, Tainan, Taiwan
[8] Kaohsiung Med Univ, Div Cardiol, Dept Internal Med, Kaohsiung Med Univ Hosp, Kaohsiung 807, Taiwan
[9] Kaohsiung Med Univ, Coll Med, Sch Med, Dept Internal Med, Kaohsiung 807, Taiwan
[10] Chia Nan Univ Pharm & Sci, Dept Hlth & Nutr, Tainan, Taiwan
关键词
Anthracycline; Breast cancer; MACCEs; Artificial intelligence; Machine learning; SOCIETY; UPDATE;
D O I
10.1007/s00204-022-03341-y
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Although anti-cancer therapy-induced cardiotoxicity is known, until now it lacks a reliable risk predictive model of the subsequent cardiotoxicity in breast cancer patients receiving anthracycline therapy. An artificial intelligence (AI) with a machine learning approach has yet to be applied in cardio-oncology. Herein, we aimed to establish a predictive model for differentiating patients at a high risk of developing cardiotoxicity, including cancer therapy-related cardiac dysfunction (CTRCD) and symptomatic heart failure with reduced ejection fraction. This prospective single-center study enrolled patients with newly diagnosed breast cancer who were preparing for anthracycline therapy from 2014 to 2018. We randomized the patients into a 70%/30% split group for ML model training and testing. We used 15 variables, including clinical, chemotherapy, and echocardiographic parameters, to construct a random forest model to predict CTRCD and heart failure with a reduced ejection fraction (HFrEF) during the 3-year follow-up period (median, 30 months). Comparisons of the predictive accuracies among the random forest, logistic regression, support-vector clustering (SVC), LightGBM, K-nearest neighbor (KNN), and multilayer perceptron (MLP) models were also performed. Notably, predicting CTRCD using the MLP model showed the best accuracy compared with the logistic regression, random forest, SVC, LightGBM, and KNN models. The areas under the curves (AUC) of MLP achieved 0.66 with the sensitivity and specificity as 0.86 and 0.53, respectively. Notably, among the features, the use of trastuzumab, hypertension, and anthracycline dose were the major determinants for the development of CTRCD in the logistic regression. Similarly, MLP, logistic regression, and SVM also showed higher AUCs for predicting the development of HFrEF. We also validated the AI prediction model with an additional set of patients developing HFrEF, and MLP presented an AUC of 0.81. Collectively, an AI prediction model is promising for facilitating physicians to predict CTRCD and HFrEF in breast cancer patients receiving anthracycline therapy. Further studies are warranted to evaluate its impact in clinical practice.
引用
收藏
页码:2731 / 2737
页数:7
相关论文
共 17 条
[1]   Deep Learning-Based Automated Echocardiographic Quantification of Left Ventricular Ejection Fraction A Point-of-Care Solution [J].
Asch, Federico M. ;
Mor-Avi, Victor ;
Rubenson, David ;
Goldstein, Steven ;
Saric, Muhamed ;
Mikati, Issam ;
Surette, Samuel ;
Chaudhry, Ali ;
Poilvert, Nicolas ;
Hong, Ha ;
Horowitz, Russ ;
Park, Daniel ;
Diaz-Gomez, Jose L. ;
Boesch, Brandon ;
Nikravan, Sara ;
Liu, Rachel B. ;
Philips, Carolyn ;
Thomas, James D. ;
Martin, Randolph P. ;
Lang, Roberto M. .
CIRCULATION-CARDIOVASCULAR IMAGING, 2021, 14 (06) :528-537
[2]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[3]   Clinical, Echocardiographic, and Biomarker Associations With Impaired Cardiorespiratory Fitness Early After HER2-Targeted Breast Cancer Therapy [J].
Bonsignore, Alis ;
Marwick, Thomas H. ;
Adams, Scott C. ;
Thampinathan, Babitha ;
Somerset, Emily ;
Amir, Eitan ;
Walker, Mike ;
Abdel-Qadir, Husam ;
Koch, C. Anne ;
Ross, Heather J. ;
Woo, Anna ;
Wintersperger, Bernd J. ;
Haykowsky, Mark J. ;
Thavendiranathan, Paaladinesh .
JACC: CARDIOONCOLOGY, 2021, 3 (05) :678-691
[4]   Cardiovascular risk factors during cancer treatment. Prevalence and prognostic relevance: insights from the CARDIOTOX registry [J].
Caro-Codon, Juan ;
Lopez-Fernandez, Teresa ;
Alvarez-Ortega, Carlos ;
Zamora Aunon, Pilar ;
Rodriguez Rodriguez, Isabel ;
Gomez Prieto, Pilar ;
Buno Soto, Antonio ;
Canales Albendea, Miguel ;
Albaladejo, Ainara ;
Mediavilla, Guiomar ;
Feliu Batlle, Jaime ;
Rodriguez Fraga, Olaia ;
Martinez Monzonis, Amparo ;
Gonzalez-Costello, Jose ;
Serrano Antolin, Jose Maria ;
Cadenas Chamorro, Rosalia ;
Gonzalez-Juanatey, Jose R. ;
Lopez-Sendon, Jose .
EUROPEAN JOURNAL OF PREVENTIVE CARDIOLOGY, 2022, 29 (06) :859-868
[5]   Risks of Aromatase Inhibitor-Related Cardiotoxicity in Patients with Breast Cancer in Asia [J].
Chang, Wei-Ting ;
Chen, Po-Wei ;
Lin, Hui-Wen ;
Kuo, Yu-Hsuan ;
Lin, Sheng-Hsiang ;
Li, Yi-Heng .
CANCERS, 2022, 14 (03)
[6]   The impact of a multidisciplinary cardio-oncology programme on cardiovascular outcomes in Taiwan [J].
Chang, Wei-Ting ;
Feng, Yin-Hsun ;
Kuo, Yu Hsuan ;
Chen, Wei-Yu ;
Wu, Hong-Chang ;
Huang, Chien-Tai ;
Wang, Wen-Ching ;
Liao, Chia-Te ;
Chen, Zhih-Cherng .
ESC HEART FAILURE, 2020, 7 (05) :2135-2139
[7]   Selection of safe artemisinin derivatives using a machine learning-based cardiotoxicity platform and in vitro and in vivo validation [J].
Kadioglu, Onat ;
Klauck, Sabine M. ;
Fleischer, Edmond ;
Shan, Letian ;
Efferth, Thomas .
ARCHIVES OF TOXICOLOGY, 2021, 95 (07) :2485-2495
[8]   Development and Validation of a Risk Score Model for Predicting the Cardiovascular Outcomes After Breast Cancer Therapy: The CHEMO-RADIAT Score [J].
Kim, Do Young ;
Park, Myung-Soo ;
Youn, Jong-Chan ;
Lee, Sunki ;
Choi, Jae Hyuk ;
Jung, Mi-Hyang ;
Kim, Lee Su ;
Kim, Sung Hea ;
Han, Seongwoo ;
Ryu, Kyu-Hyung .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2021, 10 (16)
[9]   Multimodality Advanced Cardiovascular and Molecular Imaging for Early Detection and Monitoring of Cancer Therapy-Associated Cardiotoxicity and the Role of Artificial Intelligence and Big Data [J].
Kwan, Jennifer M. ;
Oikonomou, Evangelos K. ;
Henry, Mariana L. ;
Sinusas, Albert J. .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
[10]   Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging [J].
Lang, Roberto M. ;
Badano, Luigi P. ;
Mor-Avi, Victor ;
Afilalo, Jonathan ;
Armstrong, Anderson ;
Ernande, Laura ;
Flachskampf, Frank A. ;
Foster, Elyse ;
Goldstein, Steven A. ;
Kuznetsova, Tatiana ;
Lancellotti, Patrizio ;
Muraru, Denisa ;
Picard, Michael H. ;
Rietzschel, Ernst R. ;
Rudski, Lawrence ;
Spencer, Kirk T. ;
Tsang, Wendy ;
Voigt, Jens-Uwe .
EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2015, 16 (03) :233-271