Diagnostic potential of gut microbiota in Parkinson's disease

被引:1
作者
Petrov, V. A. [1 ]
Alifirova, V. M. [2 ]
Saltykova, I., V [1 ]
Zhukova, I. A. [2 ]
Zhukova, N. G. [2 ]
Dorofeeva, Yu B. [1 ,3 ]
Ikkert, O. P. [1 ,5 ]
Titova, M. A. [2 ]
Mironova, Yu S. [2 ]
Sazonov, A. E. [1 ]
Karpova, M. R. [4 ]
机构
[1] SSMU, Cent Res Lab, 2 Moscow Trakt, Tomsk 634050, Russia
[2] SSMU, Neurol & Neurosurg Dept, 2 Moscow Trakt, Tomsk 634050, Russia
[3] SSMU, Biol & Genet Dept, 2 Moscow Trakt, Tomsk 634050, Russia
[4] SSMU, Microbiol & Virusol Dept, 2 Moscow Trakt, Tomsk 634050, Russia
[5] Natl Res Tomsk State Univ, Engn Sch New Mfg Technol, Sci & Educ Ctr, 36 Lenin Ave, Tomsk 634050, Russia
来源
BYULLETEN SIBIRSKOY MEDITSINY | 2019年 / 18卷 / 04期
基金
俄罗斯基础研究基金会;
关键词
gut microbiota; Parkinson's disease; 16S rRNA gene sequencing; machine learning; diagnostics;
D O I
10.20538/1682-0363-2019-4-92-101
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background. Nowadays many efforts are taken in searching for Parkinson's disease biomarkers, especially for an early recognition of the disease. The gut microbiota is one of the potential sources of biomarkers, changes in the composition of which in PD are actively studied. The aim of this study is to identify microbiota biomarkers in the Parkinson's disease with an estimated accuracy of the diagnostics, including differential diagnostics, relative to other neurological diseases for patients of the Russian population. Material and methods. One hundred ninety-two metagenomics profiles from patients with Parkinson's disease (n = 93), people with other neurological diagnoses (n = 33), and healthy controls (n = 66) were included in this study. These profiles were obtained with amplicon sequencing of bacterial 16S rRNA genes. Classifying models were made using the naive Bayes classifier, the artificial neural network, support vector machine, generalized linear model, and partial least squares regression. As a result we established that an optimal classification by the composition of the gut microbiota on the validation sample (sensitivity 91.30%, specificity 91.67% at 91.49% accuracy) amid patients was demonstrated with a naive Bayes classifier using the representation of the following genera as predictors: Christensenella, Methanobrevibacter, Leuconostoc, Enterococcus, Catabacter, Desulfovibrio, Sphingomonas, Yokenella, Atopobium, Fusicatenibacter, Cloacibacillus, Bulleidia, Acetanaerobacterium, and Staphylococcus. Conclusions. Information of the gut microbiota taxonomic composition may be used in differential diagnosis of Parkinson's disease.
引用
收藏
页码:92 / 101
页数:10
相关论文
共 27 条
[11]   Parkinson's Disease and Parkinson's Disease Medications Have Distinct Signatures of the Gut Microbiome [J].
Hill-Burns, Erin M. ;
Debelius, Justine W. ;
Morton, James T. ;
Wissemann, William T. ;
Lewis, Matthew R. ;
Wallen, Zachary D. ;
Peddada, Shyamal D. ;
Factor, Stewart A. ;
Molho, Eric ;
Zabetian, Cyrus P. ;
Knight, Rob ;
Payami, Haydeh .
MOVEMENT DISORDERS, 2017, 32 (05) :739-749
[12]   Gut microbiota in Parkinson disease in a northern German cohort [J].
Hopfner, Franziska ;
Kuenstner, Axel ;
Mueller, Stefanie H. ;
Kuenzel, Sven ;
Zeuner, Kirsten E. ;
Margraf, Nils G. ;
Deuschl, Giinther ;
Baines, John F. ;
Kuhlenbaeumer, Gregor .
BRAIN RESEARCH, 2017, 1667 :41-45
[13]   Colonic Bacterial Composition in Parkinson's Disease [J].
Keshavarzian, Ali ;
Green, Stefan J. ;
Engen, Phillip A. ;
Voigt, Robin M. ;
Naqib, Ankur ;
Forsyth, Christopher B. ;
Mutlu, Ece ;
Shannon, Kathleen M. .
MOVEMENT DISORDERS, 2015, 30 (10) :1351-1360
[14]   Building Predictive Models in R Using the caret Package [J].
Kuhn, Max .
JOURNAL OF STATISTICAL SOFTWARE, 2008, 28 (05) :1-26
[15]   Gut microbiota dysbiosis contributes to the development of hypertension [J].
Li, Jing ;
Zhao, Fangqing ;
Wang, Yidan ;
Chen, Junru ;
Tao, Jie ;
Tian, Gang ;
Wu, Shouling ;
Liu, Wenbin ;
Cui, Qinghua ;
Geng, Bin ;
Zhang, Weili ;
Weldon, Ryan ;
Auguste, Kelda ;
Yang, Lei ;
Liu, Xiaoyan ;
Chen, Li ;
Yang, Xinchun ;
Zhu, Baoli ;
Cai, Jun .
MICROBIOME, 2017, 5
[16]   UniFrac: a new phylogenetic method for comparing microbial communities [J].
Lozupone, C ;
Knight, R .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (12) :8228-8235
[17]   Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools and Biological Insights [J].
Pasolli, Edoardo ;
Duy Tin Truong ;
Malik, Faizan ;
Waldron, Levi ;
Segata, Nicola .
PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (07)
[18]   A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic [J].
Patrascu, Orlane ;
Beguet-Crespel, Fabienne ;
Marinelli, Ludovica ;
Le Chatelier, Emmanuelle ;
Abraham, Anne-Laure ;
Leclerc, Marion ;
Klopp, Christophe ;
Terrapon, Nicolas ;
Henrissat, Bernard ;
Blottiere, Herve M. ;
Dore, Jol ;
Bera-Maillet, Christel .
SCIENTIFIC REPORTS, 2017, 7
[19]  
Paulson JN, 2013, NAT METHODS, V10, P1200, DOI [10.1038/nmeth.2658, 10.1038/NMETH.2658]
[20]   Comparison study of gut microbiota in case of Parkinson's disease and other neurological disorders [J].
Petrov, V. A. ;
Alifirova, V. M. ;
Saltykova, I., V ;
Zhukova, I. A. ;
Zhukova, N. G. ;
Dorofeeva, Yu B. ;
Tyakht, A., V ;
Altukhov, I. A. ;
Kostryukova, E. S. ;
Titova, M. A. ;
Mironova, Yu S. ;
Izhboldina, O. P. ;
Nikitina, M. A. ;
Perevozchikova, T., V ;
Fait, E. A. ;
Sazonov, A. E. .
BYULLETEN SIBIRSKOY MEDITSINY, 2016, 15 (05) :113-125