An Intelligent Diagnosis Method for Machine Fault Based on Federated Learning

被引:16
作者
Li, Zhinong [1 ]
Li, Zedong [1 ]
Li, Yunlong [2 ]
Tao, Junyong [3 ]
Mao, Qinghua [4 ]
Zhang, Xuhui [4 ]
机构
[1] Nanchang Hangkong Univ, Key Lab Nondestruct Testing, Minist Educ, Nanchang 330063, Jiangxi, Peoples R China
[2] Guangxi Univ, Sch Mech Engn, Nanning 530004, Peoples R China
[3] Natl Univ Def Technol, Lab Sci & Technol Integrated Logist Support, Changsha 410073, Peoples R China
[4] Xian Univ Sci & Technol, Shaanxi Key Lab Mine Electromech Equipment Intell, Xian 710054, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 24期
基金
中国国家自然科学基金;
关键词
federated learning; fault diagnosis; deep convolutional neural network; model fusion; CONVOLUTIONAL NEURAL-NETWORK; ROTATING MACHINERY; CLASSIFICATION; AUTOENCODER;
D O I
10.3390/app112412117
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In engineering, the fault data unevenly distribute and difficultly share, which causes that the existing fault diagnosis methods cannot recognize the newly added fault types. An intelligent diagnosis method for machine fault is proposed based on federated learning. Firstly, the local fault diagnosis models diagnosing the existing fault data and the newly added fault data are established by deep convolutional neural network. Then, the weight parameters of local models are fused into global model parameters by federated learning. Finally, the global model parameters are transmitted to each local model. Therefore, each local model update into a global shared model which can recognize the newly added fault types. The proposed method is verified by bearing data. Compared with the traditional model, which can only diagnose the existing fault data but cannot recognize newly added fault types, the federated fault diagnosis model fusing weight parameters can diagnose newly added faults without exchanging the data, and the accuracy is 100%. The proposed method provides an effective method to solve the poor sharing of fault data and poor generalization of fault diagnosis model for mechanical equipment.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] An improved federated learning method based on MF1-FedAvg and MSRANet for machinery fault diagnosis
    Liu, Xiuyan
    Pang, Chunqiu
    Guo, Tingting
    He, Donglin
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2024, 38 (09) : 4683 - 4697
  • [32] An intelligent fault diagnosis method based on adaptive maximal margin tensor machine
    Pan, Haiyang
    Xu, Haifeng
    Liu, Qingyun
    Zheng, Jinde
    Tong, Jinyu
    MEASUREMENT, 2022, 198
  • [33] Prototype Based Personalized Federated Learning for Planetary Gearbox Fault Diagnosis
    Sun, Wenjun
    Yan, Ruqiang
    2024 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC 2024, 2024,
  • [34] A rolling bearing fault diagnosis method based on cloud-edge collaboration federated transfer learning
    Liang, Xintao
    Sun, Yulin
    Kang, Shouqiang
    Zhao, Zhihui
    Wang, Yujing
    Wang, Qingyan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (04)
  • [35] Development of Intelligent Fault Diagnosis Technique of Rotary Machine Element Bearing: A Machine Learning Approach
    Saha, Dip Kumar
    Hoque, Md. Emdadul
    Badihi, Hamed
    SENSORS, 2022, 22 (03)
  • [36] Intelligent Machine Fault Diagnosis Using Convolutional Neural Networks and Transfer Learning
    Zhang, Wentao
    Zhang, Ting
    Cui, Guohua
    Pan, Ying
    IEEE ACCESS, 2022, 10 : 50959 - 50973
  • [37] Fault-Diagnosis Method for Rotating Machinery Based on SVMD Entropy and Machine Learning
    Zhang, Lijun
    Zhang, Yuejian
    Li, Guangfeng
    ALGORITHMS, 2023, 16 (06)
  • [38] A novel Roller Bearing Fault Diagnosis Method based on the Wavelet Extreme Learning Machine
    Xin Yu
    Li Shunming
    Wang Jingrui
    2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN), 2017, : 504 - 509
  • [39] Rolling bearing intelligent fault diagnosis method based on IPSO-WCNN
    Chen, Ronghua
    Gu, Yingkui
    Wu, Kuan
    Li, Cheng
    MEASUREMENT & CONTROL, 2023, 56 (3-4) : 681 - 693
  • [40] New automated machine learning based imbalanced learning method for fault diagnosis
    Sun C.
    Wen L.
    Li X.
    Gao L.
    Cong J.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2021, 27 (10): : 2837 - 2847