The Metric Integral of Set-Valued Functions

被引:4
|
作者
Dyn, Nira [1 ]
Farkhi, Elza [1 ,2 ]
Mokhov, Alona [3 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, Tel Aviv, Israel
[2] Bulgarian Acad Sci, Inst Math & Informat, Sofia, Bulgaria
[3] Afeka Tel Aviv Acad Coll Engn, Unit Math, Tel Aviv, Israel
关键词
Compact sets; Set-valued functions; Metric selections; Metric linear combinations; Aumann integral; Kuratowski upper limit; Metric integral; APPROXIMATIONS;
D O I
10.1007/s11228-017-0403-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces a new integral of univariate set-valued functions of bounded variation with compact images in R-d. The new integral, termed the metric integral, is defined using metric linear combinations of sets and is shown to consist of integrals of all the metric selections of the integrated multifunction. The metric integral is a subset of the Aumann integral, but in contrast to the latter, it is not necessarily convex. For a special class of segment functions equality of the two integrals is shown. Properties of the metric selections and related properties of the metric integral are studied. Several indicative examples are presented.
引用
收藏
页码:867 / 885
页数:19
相关论文
共 50 条
  • [31] On a set-valued Young integral with applications to differential inclusions
    Coutin, Laure
    Marie, Nicolas
    de Fitte, Paul Raynaud
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 512 (01)
  • [32] SET-VALUED APPROXIMATION OF MULTIFUNCTIONS
    Muresan, Marian
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2010, 55 (01): : 107 - 148
  • [33] Some properties of Choquet integrals of set-valued functions
    Jang, LC
    Kil, BM
    Kim, YK
    Kwon, JS
    FUZZY SETS AND SYSTEMS, 1997, 91 (01) : 95 - 98
  • [34] Several remarks on the complexity of set-valued switching functions
    Simovici, DA
    Reischer, C
    1996 26TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 1996, : 166 - 170
  • [35] ON LIPSCHITZIAN OPERATORS OF SUBSTITUTION GENERATED BY SET-VALUED FUNCTIONS
    Ludew, Jakub Jan
    OPUSCULA MATHEMATICA, 2007, 27 (01) : 13 - 24
  • [36] Complete Duality for Quasiconvex and Convex Set-Valued Functions
    Drapeau, Samuel
    Hamel, Andreas H.
    Kupper, Michael
    SET-VALUED AND VARIATIONAL ANALYSIS, 2016, 24 (02) : 253 - 275
  • [37] Complete Duality for Quasiconvex and Convex Set-Valued Functions
    Samuel Drapeau
    Andreas H. Hamel
    Michael Kupper
    Set-Valued and Variational Analysis, 2016, 24 : 253 - 275
  • [38] An approach to pseudo-integration of set-valued functions
    Grbic, Tatjana
    Stajner-Papuga, Ivana
    Strboja, Mirjana
    INFORMATION SCIENCES, 2011, 181 (11) : 2278 - 2292
  • [39] Interval-valued Choquet integral for set-valued mappings: definitions, integral representations and primitive characteristics
    Gong, Zengtai
    Kou, Xuyang
    Xie, Ting
    AIMS MATHEMATICS, 2020, 5 (06): : 6277 - 6297
  • [40] New differentiability concepts for set-valued functions and applications to set differential equations
    Khastan, A.
    Rodriguez-Lopez, R.
    Shahidi, M.
    INFORMATION SCIENCES, 2021, 575 : 355 - 378