Numerical algorithm for estimating temperature-dependent thermal conductivity

被引:22
|
作者
Chen, HT [1 ]
Lin, JY [1 ]
Wu, CH [1 ]
Huang, CH [1 ]
机构
[1] NATL CHENG KUNG UNIV, DEPT NAVAL ARCHITECTURE & MARINE ENGN, TAINAN 701, TAIWAN
关键词
D O I
10.1080/10407799608914995
中图分类号
O414.1 [热力学];
学科分类号
摘要
The hybrid scheme of the Laplace transform technique and the central difference approximation is applied to estimate the temperature-dependent thermal conductivity by utilizing temperature measurements inside the material at an arbitrary specified time. In the present study the functional form of the thermal conductivity is not known a priori. Thus, this problem can be regarded as the functional estimation in inverse calculation. The accuracy of the predicted results is examined from various illustrated cases using simulated exact and inexact temperature measurements obtained within the medium. Results show that a good estimation on the thermal conductivity can be obtained with any arbitrary initial guesses of the thermal conductivity. The advantage of the present method in the inverse analysis is that, for most types of boundary conditions, the relation between the thermal conductivity and temperature at any specified time can be determined without measuring the early temperature data.
引用
收藏
页码:509 / 522
页数:14
相关论文
共 50 条
  • [1] Estimating temperature-dependent thermal properties
    Dowding, Kevin J.
    Beck, James V.
    Blackwell, Ben F.
    Journal of thermophysics and heat transfer, 13 (03): : 328 - 336
  • [2] Estimating temperature-dependent thermal properties
    Dowding, KJ
    Beck, JV
    Blackwell, BF
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 1999, 13 (03) : 328 - 336
  • [3] A NUMERICAL ANALYSIS OF A CONVECTIVE STRAIGHT FIN WITH TEMPERATURE-DEPENDENT THERMAL CONDUCTIVITY
    Sevilgen, Gokhan
    THERMAL SCIENCE, 2017, 21 (02): : 939 - 952
  • [4] Estimating temperature-dependent thermal conductivity of copper oxide using an inverse method
    Zhang, Jing
    Su, Guofeng
    Chen, Tao
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (21) : 11777 - 11791
  • [5] A novel hybrid deep learning algorithm for estimating temperature-dependent thermal conductivity in transient heat conduction problems
    Qiu, Wenkai
    Chen, Haolong
    Zhou, Huanlin
    International Communications in Heat and Mass Transfer, 2025, 164
  • [6] Numerical solution of temperature-dependent thermal conductivity problems using a meshless method
    Singh, Akhilendra
    Singh, Indra Vir
    Prakash, Ravi
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2006, 50 (02) : 125 - 145
  • [7] Cooling of a gas with a temperature-dependent thermal conductivity
    Vekstein, GE
    PHYSICA SCRIPTA, 1998, 57 (03): : 422 - 426
  • [8] Temperature-dependent thermal conductivity of porous silicon
    Gesele, G
    Linsmeier, J
    Drach, V
    Fricke, J
    ArensFischer, R
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1997, 30 (21) : 2911 - 2916
  • [9] Numerical analysis of laminar forced convection with temperature-dependent thermal conductivity of nanofluids and thermal dispersion
    Ozerinc, S.
    Yazicioglu, A. G.
    Kakac, S.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2012, 62 : 138 - 148
  • [10] A combined experimental and numerical method for extracting temperature-dependent thermal conductivity of gypsum boards
    Rahmanian, I.
    Wang, Y. C.
    CONSTRUCTION AND BUILDING MATERIALS, 2012, 26 (01) : 707 - 722