Applying CVD diamond and particulate nanodiamond

被引:0
|
作者
Davidson, JL [1 ]
Kang, WP [1 ]
机构
[1] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA
来源
Synthesis, Properties and Applications of Ultrananocrystalline Diamond | 2005年 / 192卷
关键词
nanodiamond; sensor; field emission devices; electron emission; thermal conductivity;
D O I
暂无
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanometer scale diamond tip emitters for cold cathodes are being developed as (a) vertical and (b) lateral diamond vacuum field emission devices. These diamond field emission devices, diode and triode, were fabricated with a self-aligning gate formation technique from silicon-on-insulator wafers using variations of silicon micropatterning techniques. High emission current, > 0.1A was achieved from the vertical diamond field emission diode with an indented anode design. The gated diamond triode in vertical configuration displayed excellent transistor characteristics with high DC gain of similar to 800 and large AC output voltage of similar to 100 V p-p. Lateral diamond field emission diodes with cathode-anode spacing less than 2 mu m were fabricated. The lateral diamond emitter exhibited a low turn-on voltage of similar to 5 V and a high emission current of 6 mu A. The low turn-on voltage (field similar to 3 V/mu m) and high emission characteristics are the best of reported lateral field emitter structures. We are also examining particulate nanodiamond for thermal conductivity enhancement of dielectric oils. We have observed that a dispersion of nanodiamond (particle size circa < 5 nm) can increase the overall thermal conductivity of cooling oils such as used in power transformers by over 25%.
引用
收藏
页码:357 / 372
页数:16
相关论文
共 50 条
  • [21] DOPING OF CVD DIAMOND
    Teteruk, D. V.
    Tarelkin, S. A.
    Bormashov, V. S.
    Volkov, A. P.
    Kornilov, N. V.
    Terent'ev, S. A.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 2014, 57 (05): : 56 - +
  • [22] Fracture in CVD diamond
    Telling, RH
    Field, JE
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 1998, 16 (4-6): : 269 - 276
  • [23] Fracture in CVD diamond
    Telling, R.H.
    Field, J.E.
    International Journal of Refractory Metals and Hard Materials, 1998, 16 (4 -6 pt 1): : 269 - 276
  • [24] MECHANISMS OF DIAMOND CVD
    BUTLER, JE
    WOODIN, RL
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1993, 205 : 186 - COLL
  • [25] CVD diamond detectors
    Manfredotti, C.
    Polesello, P.
    Truccato, M.
    Vittone, E.
    Lo Giudice, A.
    Fizzotti, F.
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 410 (01): : 96 - 99
  • [26] CVD diamond for spintronics
    Markham, M. L.
    Dodson, J. M.
    Scarsbrook, G. A.
    Twitchen, D. J.
    Balasubramanian, G.
    Jelezko, F.
    Wrachtrup, J.
    DIAMOND AND RELATED MATERIALS, 2011, 20 (02) : 134 - 139
  • [27] Energy Storage Utilizing Advanced CVD Nanodiamond Technology
    Minden, Stephen E.
    Fraley, John
    Kegley, Lauren
    Davidson, Jim
    Kerns, David
    2015 IEEE INTERNATIONAL WORKSHOP ON INTEGRATED POWER PACKAGING (IWIPP), 2015, : 56 - 59
  • [28] Binding of diamond powder layers by CVD diamond
    Eremin, S. A.
    Anikin, V. N.
    Sinitsyn, D. Y.
    Leontiev, I. A.
    Kudryashov, O. Yu
    Khovaylo, V. V.
    Spitsyn, B., V
    MANUFACTURING LETTERS, 2020, 26 : 25 - 28
  • [29] CVD Synthetic Diamond Overgrowth on a Natural Diamond
    Moe, Kyaw Soe
    Johnson, Paul
    D'Haenens-Johansson, Ulrika
    Wang, Wuyi
    GEMS & GEMOLOGY, 2017, 53 (02): : 237 - 239
  • [30] RECTIFICATION AND INTERNAL PHOTOEMISSION IN METAL CVD DIAMOND AND METAL CVD DIAMOND/SILICON STRUCTURES
    GROT, SA
    LEE, S
    GILDENBLAT, GS
    HATFIELD, CW
    WRONSKI, CR
    BADZIAN, AR
    BADZIAN, T
    MESSIER, R
    JOURNAL OF MATERIALS RESEARCH, 1990, 5 (11) : 2497 - 2501