Orbits of period two in the family of a multipoint variant of Chebyshev-Halley family

被引:9
|
作者
Campos, Beatriz [1 ]
Cordero, Alicia [2 ]
Torregrosa, Juan R. [2 ]
Vindel, Pura [1 ]
机构
[1] Univ Jaume 1, Inst Matemat & Aplicac Castellon, Castellon de La Plana, Spain
[2] Univ Politecn Valencia, Inst Matemat Multidisciplinar, Valencia, Spain
关键词
Iterative methods; Complex dynamics; Chebyshev-Halley's family; 2-periodic orbits; 2-bulbs; DYNAMICS;
D O I
10.1007/s11075-015-0089-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The study of the dynamical behaviour of the operators defined by iterative methods help us to know more deeply the regions where these methods have a good performance. In this paper, we follow the dynamical study of a multipoint variant of the known Chebyshev-Halley's family, showing the existence of attractive periodic orbits of period 2 for some values of the parameter.
引用
收藏
页码:141 / 156
页数:16
相关论文
共 15 条
  • [1] Orbits of period two in the family of a multipoint variant of Chebyshev-Halley family
    Beatriz Campos
    Alicia Cordero
    Juan R. Torregrosa
    Pura Vindel
    Numerical Algorithms, 2016, 73 : 141 - 156
  • [2] Dynamics of a multipoint variant of Chebyshev-Halley's family
    Campos, Beatriz
    Cordero, Alicia
    Torregrosa, Juan R.
    Vindel, Pura
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 284 : 195 - 208
  • [3] Bulbs of Period Two in the Family of Chebyshev-Halley Iterative Methods on Quadratic Polynomials
    Cordero, Alicia
    Torregrosa, Juan R.
    Vindel, Pura
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [4] Convergence regions for the Chebyshev-Halley family
    Campos, B.
    Canela, J.
    Vindel, P.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 56 : 508 - 525
  • [5] Dynamics of a family of Chebyshev-Halley type methods
    Cordero, Alicia
    Torregrosa, Juan R.
    Vindel, Pura
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (16) : 8568 - 8583
  • [6] Connectivity of the Julia set for the Chebyshev-Halley family on degree n polynomials
    Campos, B.
    Canela, J.
    Vindel, P.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 82
  • [7] An efficient family of Chebyshev-Halley's methods for system of nonlinear equations
    Behl, Ramandeep
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (04) : 868 - 885
  • [8] Some variants of the Chebyshev-Halley family of methods with fifth order of convergence
    Grau-Sanchez, Miquel
    Gutierrez, Jose M.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (04) : 818 - 833
  • [9] Newton-Like Components in the Chebyshev-Halley Family of Degree n Polynomials
    Paraschiv, Dan
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [10] An optimized Chebyshev-Halley type family of multiple solvers: Extensive analysis and applications
    Rani, Litika
    Soleymani, Fazlollah
    Kansal, Munish
    Nashine, Hemant Kumar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022,