High-Level Metrics for Service Level Objective-aware Autoscaling in Polaris: a Performance Evaluation

被引:2
作者
Bartelucci, Nicolo [1 ]
Bellavista, Paolo [1 ]
Pusztai, Thomas [2 ]
Morichetta, Andrea [2 ]
Dustdar, Schahram [2 ]
机构
[1] Univ Bologna, Dept Comp Sci & Engn, Bologna, Italy
[2] Vienna Univ Technol, Distributed Syst Grp, Vienna, Austria
来源
6TH IEEE INTERNATIONAL CONFERENCE ON FOG AND EDGE COMPUTING (ICFEC 2022) | 2022年
关键词
Cloud; Edge; Computing; Autoscaling; Polaris; Kubernetes; Performance; Evaluation; Horizontal; Pod; Autoscaler; Elasticity; High-level; SLO; Horizontal Pod Autoscaler;
D O I
10.1109/ICFEC54809.2022.00017
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the increasing complexity, requirements, and variability of cloud services, it is not always easy to find the right static/dynamic thresholds for the optimal configuration of low-level metrics for autoscaling resource management decisions. A Service Level Objective (SLO) is a high-level commitment to maintaining a specific state of a service in a given period, within a Service Level Agreement (SLA): the goal is to respect a given metric, like uptime or response time within given time or accuracy constraints. In this paper, we show the advantages and present the progress of an original SLO-aware autoscaler for the Polaris framework. In addition, the paper contributes to the literature in the field by proposing novel experimental results comparing the Polaris autoscaling performance, based on high-level latency SLO, and the performance of a low-level average CPU-based SLO, implemented by the Kubernetes Horizontal Pod Autoscaler.
引用
收藏
页码:73 / 77
页数:5
相关论文
共 17 条
[1]  
Al Jawarneh Isam Mashhour, 2019, IEEE ICC, P1, DOI [DOI 10.1109/icc.2019.8762053, DOI 10.1109/ICC.2019.8762053, 10.1109/ICC.2019. 8762053]
[2]   Elasticity in Cloud Computing: State of the Art and Research Challenges [J].
Al-Dhuraibi, Yahya ;
Paraiso, Fawaz ;
Djarallah, Nabil ;
Merle, Philippe .
IEEE TRANSACTIONS ON SERVICES COMPUTING, 2018, 11 (02) :430-447
[3]  
Amazon AWS, 2019, AM CLOUDWATCH PERC A
[4]  
Amazon web services inc, 2020, AWS AUT SCAL FEAT
[5]   Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility [J].
Buyya, Rajkumar ;
Yeo, Chee Shin ;
Venugopal, Srikumar ;
Broberg, James ;
Brandic, Ivona .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2009, 25 (06) :599-616
[6]   Elasticity in cloud computing: a survey [J].
Coutinho, Emanuel Ferreira ;
de Carvalho Sousa, Flavio Rubens ;
Leal Rego, Paulo Antonio ;
Gomer, Danielo Goncalves ;
de Souza, Jose Neuman .
ANNALS OF TELECOMMUNICATIONS, 2015, 70 (7-8) :289-309
[7]   Characterizing Service Level Objectives for Cloud Services: Realities and Myths [J].
Ding, Jianru ;
Cao, Ruiqi ;
Saravanan, Indrajeet ;
Morris, Nathaniel ;
Stewart, Christopher .
2019 IEEE INTERNATIONAL CONFERENCE ON AUTONOMIC COMPUTING (ICAC 2019), 2019, :200-206
[8]   Principles of Elastic Processes [J].
Dustdar, Schahram ;
Guo, Yike ;
Satzger, Benjamin ;
Truong, Hong-Linh .
IEEE INTERNET COMPUTING, 2011, 15 (05) :66-71
[9]  
Google LLC, 2020, AUT GROUPS INST
[10]   The WSLA Framework: Specifying and Monitoring Service Level Agreements for Web Services [J].
Keller, Alexander ;
Ludwig, Heiko .
Journal of Network and Systems Management, 2003, 11 (01) :57-81