Disjoint hypercyclic linear fractional composition operators

被引:46
作者
Bes, J. [1 ]
Martin, Oe [2 ]
Peris, A. [3 ]
机构
[1] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
[2] Miami Univ, Dept Math, Oxford, OH 45056 USA
[3] Univ Politecn Valencia, Dept Matemat Aplicada, IUMPA, Valencia 46022, Spain
关键词
Hypercyclic operators; Composition operators; Dirichlet spaces; BEHAVIOR; SPACES;
D O I
10.1016/j.jmaa.2011.03.072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize disjoint hypercyclicity and disjoint supercyclicity of finitely many linear fractional composition operators acting on spaces of holomorphic functions on the unit disc, answering a question of Bernal-Gonzalez. We also study mixing and disjoint mixing behavior of projective limits of endomorphisms of a projective spectrum. In particular, we show that a linear fractional composition operator is mixing on the projective limit of the 5, spaces strictly containing the Dirichlet space if and only if the operator is mixing on the Hardy space. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:843 / 856
页数:14
相关论文
共 22 条
[11]  
Cowen C.C., 1995, STUD ADV MATH
[12]   The role of the angle in supercyclic behavior [J].
Gallardo-Gutiérrez, EA ;
Montes-Rodríguez, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 203 (01) :27-43
[13]  
GALLARDOGUTIERR.EA, 2004, MEM AM MATH SOC, V167
[14]  
Grosse-Erdmann KG, 2010, RACSAM REV R ACAD A, V104, P413, DOI 10.5052/RACSAM.2010.25
[15]  
GROSSEERDMANN KG, LINEAR CHAOS UNIVERS
[16]   Dual disjoint hypercyclic operators [J].
Salas, Hector N. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 374 (01) :106-117
[17]   HYPERCYCLIC WEIGHTED SHIFTS [J].
SALAS, HN .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (03) :993-1004
[18]  
Shapiro JH, 2001, N-HOLLAND M, V189, P143
[19]   Universal elements for non-linear operators and their applications [J].
Shkarin, Stanislav .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (01) :193-210
[20]   A short proof of existence of disjoint hypercyclic operators [J].
Shkarin, Stanislav .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 367 (02) :713-715