Multi-class railway complaints categorization using Neural Networks: RailNeural

被引:4
|
作者
Gupta, Meenu [1 ]
Singh, Anubhav [2 ]
Jain, Rachna [5 ]
Saxena, Anmol [3 ]
Ahmed, Shakeel [4 ]
机构
[1] Chandigarh Univ, Chandigarh, Punjab, India
[2] Indraprastha Inst Informat Technol Delhi, Delhi, India
[3] Bharati Vidyapeeths Coll Engn, New Delhi, India
[4] King Faisal Univ, Coll Comp Sci & Informat Technol, Alhassa, Saudi Arabia
[5] Bhagwan Parshuram Inst Technol, New Delhi, India
关键词
LSTM; Convolutional neural network; Multi-classification; Text classification; CRIS; Twitter; Bidirectional LSTM; COMS; Attention; RailMadad; TEXT CLASSIFICATION; LSTM;
D O I
10.1016/j.jrtpm.2021.100265
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Indian railways are one of the largest rail networks in the world, and millions of passengers travel daily through it, due to which there are also a vast number of complaints in front of Indian Railways coming every minute through various mediums like COMS (Complaint Management System) app, RailMadad, SMS etc. Given the top-down approach which is followed for the uncategorised complaints making official's work time-consuming. Therefore, faster complaint redressal becomes a critical factor for the passenger's satisfaction. Previous research has focused on traditional machine learning algorithms and Twitter dataset available publicly to tackle this problem. In this work, we have explored deep learning techniques on an official dataset of the COMS app from CRIS (Centre for Railways Information Systems) and proposed RailNeural: an Attention Based Bi-Directional Long Short-Term Memory (LSTM) model which analyses user's complaint input sequences, capturing the underlying character level feature and then classifies them into their respective departments of field units ensuring prompt and accurate redressal of complaints. Our model outperforms several baseline models achieving an accuracy of 93.25 per cent and an F1-Score of 0.93.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] On the Use of Convolutional Neural Networks and Augmented CSP Features for Multi-class Motor Imagery of EEG Signals Classification
    Yang, Huijuan
    Sakhavi, Siavash
    Ang, Kai Keng
    Guan, Cuntai
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 2620 - 2623
  • [22] Multi-Class Skin Diseases Classification Using Deep Convolutional Neural Network and Support Vector Machine
    Hameed, Nazia
    Shabut, Antesar M.
    Hossain, M. A.
    2018 12TH INTERNATIONAL CONFERENCE ON SOFTWARE, KNOWLEDGE, INFORMATION MANAGEMENT & APPLICATIONS (SKIMA), 2018, : 23 - +
  • [23] Ground and Multi-Class Classification of Airborne Laser Scanner Point Clouds Using Fully Convolutional Networks
    Rizaldy, Aldino
    Persello, Claudio
    Gevaert, Caroline
    Elberink, Sander Oude
    Vosselman, George
    REMOTE SENSING, 2018, 10 (11)
  • [24] Exploring Multi-Layer Convolutional Neural Networks for Railway Safety Text Classification
    Yang, Taocun
    Liu, Xin
    Li, Guohua
    Dai, Mingrui
    Tian, Lei
    Xie, Yanlin
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2021, : 206 - 211
  • [25] Multi-Class Vehicle Detection Using VDnet in Heterogeneous Traffic
    Deshmukh, Prashant
    Rayasam, Krishna Chaitanya
    Sahoo, Upendra Kumar
    Das, Santos Kumar
    Majhi, Sudhan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (12) : 19415 - 19429
  • [26] Multi-class imbalanced image classification using conditioned GANs
    M R Pavan Kumar
    Prabhu Jayagopal
    International Journal of Multimedia Information Retrieval, 2021, 10 : 143 - 153
  • [27] Object Detection and Localization Using Deep Convolutional Networks with Softmax Activation and Multi-class Log Loss
    Kabani, AbdulWahab
    El-Sakka, Mahmoud R.
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2016), 2016, 9730 : 358 - 366
  • [28] Multi-class imbalanced image classification using conditioned GANs
    Kumar, M. R. Pavan
    Jayagopal, Prabhu
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2021, 10 (03) : 143 - 153
  • [29] A Deep Siamese Convolution Neural Network for Multi-Class Classification of Alzheimer Disease
    Mehmood, Atif
    Maqsood, Muazzam
    Bashir, Muzaffar
    Yang Shuyuan
    BRAIN SCIENCES, 2020, 10 (02)
  • [30] Multi-class Multi-object Tracking Using Changing Point Detection
    Lee, Byungjae
    Erdenee, Enkhbayar
    Jin, Songguo
    Nam, Mi Young
    Jung, Young Giu
    Rhee, Phill Kyu
    COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 : 68 - 83