共 50 条
Nanoconfined Iron Oxychloride Material as a High-Performance Cathode for Rechargeable Chloride Ion Batteries
被引:102
|作者:
Yu, Tingting
[1
]
Li, Qiang
[3
]
Zhao, Xiangyu
[1
,2
]
Xia, Hui
[4
]
Ma, Liqun
[1
]
Wang, Jinlan
[3
]
Meng, Ying Shirley
[5
]
Shen, Xiaodong
[1
,6
]
机构:
[1] Nanjing Tech Univ, Coll Mat Sci & Engn, 5 Xinmofan Rd, Nanjing 210009, Jiangsu, Peoples R China
[2] Nanjing Tech Univ, Jiangsu Collaborat Innovat Ctr Adv Inorgan Funct, 5 Xinmofan Rd, Nanjing 210009, Jiangsu, Peoples R China
[3] Southeast Univ, Sch Phys, Nanjing 211189, Jiangsu, Peoples R China
[4] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Xiaolingwei 200, Nanjing 210094, Jiangsu, Peoples R China
[5] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
[6] Nanjing Tech Univ, State Key Lab Mat Oriented Chem Engn, 5 Xinmofan Rd, Nanjing 210009, Jiangsu, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
FEOCL;
NANOSHEETS;
DECOMPOSITION;
MECHANISM;
ANODE;
D O I:
10.1021/acsenergylett.7b00699
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
As a group of attractive photoelectromagnetic and catalytic functional materials, metal oxychlorides have been attracting attention for electrochemical energy storage in rechargeable chloride ion battery (CIB) systems recently. Their application, however, is limited by the complicated synthesis and/or poor cycling stability. Herein, a facile strategy using vacuum impregnation and subsequent thermal decomposition at mild conditions has been developed to synthesize the FeOCl/CMK-3 nanocomposite material. Benefiting from the nanoconfined structure, a high-performance FeOCl/CMK-3 cathode, which has a high discharge capacity of 202 mAh g(-1), superior cycling stability, and significantly improved charge transfer and chloride ion diffusion, is achieved. The electrolyte component is found to show a high affinity with the chlorine layer in the FeOCI phase, inducing evident expansion of the FeOC1 layers along the b-axis direction and thus boosting a new potential liquid exfoliation approach for preparing 2D FeOCI material. Importantly, reversible electrochemical reactions FeOCI cathode material based on the redox reactions of iron species and chloride ion transfer are revealed.
引用
收藏
页码:2341 / 2348
页数:8
相关论文