Crabtree/Warburg-like aerobic xylose fermentation by engineered Saccharomyces cerevisiae

被引:31
作者
Lee, Sae-Byuk [1 ,2 ,3 ,4 ]
Tremaine, Mary [1 ]
Place, Michael [1 ,3 ,4 ]
Liu, Lisa [1 ]
Pier, Austin [1 ]
Krause, David J. [1 ,2 ,3 ,4 ]
Xie, Dan [1 ]
Zhang, Yaoping [1 ]
Landick, Robert [1 ,5 ,6 ]
Gasch, Audrey P. [1 ,3 ,4 ]
Hittinger, Chris Todd [1 ,2 ,3 ,4 ]
Sato, Trey K. [1 ]
机构
[1] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53705 USA
[2] Univ Wisconsin, Wisconsin Energy Inst, JF Crow Inst Study Evolut, Madison, WI 53705 USA
[3] Univ Wisconsin, Lab Genet, Madison, WI 53705 USA
[4] Univ Wisconsin, Ctr Genom Sci Innovat, Madison, WI 53705 USA
[5] Univ Wisconsin, Dept Biochem, 420 Henry Mall, Madison, WI 53705 USA
[6] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA
基金
美国国家科学基金会; 美国食品与农业研究所;
关键词
Crabtree; Warburg effect; Metabolic engineering; Biofuels; Xylose fermentation; Adaptive laboratory evolution; Saccharomyces cerevisiae; XYLITOL DEHYDROGENASE; CORN STOVER; YEAST; METABOLISM; ISOMERASE; EVOLUTION; REDUCTASE; STRAIN; GENE; BIOFUELS;
D O I
10.1016/j.ymben.2021.09.008
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Bottlenecks in the efficient conversion of xylose into cost-effective biofuels have limited the widespread use of plant lignocellulose as a renewable feedstock. The yeast Saccharomyces cerevisiae ferments glucose into ethanol with such high metabolic flux that it ferments high concentrations of glucose aerobically, a trait called the Crabtree/Warburg Effect. In contrast to glucose, most engineered S. cerevisiae strains do not ferment xylose at economically viable rates and yields, and they require respiration to achieve sufficient xylose metabolic flux and energy return for growth aerobically. Here, we evolved respiration-deficient S. cerevisiae strains that can grow on and ferment xylose to ethanol aerobically, a trait analogous to the Crabtree/Warburg Effect for glucose. Through genome sequence comparisons and directed engineering, we determined that duplications of genes encoding engineered xylose metabolism enzymes, as well as TKL1, a gene encoding a transketolase in the pentose phosphate pathway, were the causative genetic changes for the evolved phenotype. Reengineered duplications of these enzymes, in combination with deletion mutations in HOG1, ISU1, GRE3, and IRA2, increased the rates of aerobic and anaerobic xylose fermentation. Importantly, we found that these genetic modifications function in another genetic background and increase the rate and yield of xylose-to-ethanol conversion in industrially relevant switchgrass hydrolysate, indicating that these specific genetic modifications may enable the sustainable production of industrial biofuels from yeast. We propose a model for how key regulatory mutations prime yeast for aerobic xylose fermentation by lowering the threshold for overflow metabolism, allowing mutations to increase xylose flux and to redirect it into fermentation products.
引用
收藏
页码:119 / 130
页数:12
相关论文
共 74 条
[11]   Why, when, and how did yeast evolve alcoholic fermentation? [J].
Dashko, Sofia ;
Zhou, Nerve ;
Compagno, Concetta ;
Piskur, Jure .
FEMS YEAST RESEARCH, 2014, 14 (06) :826-832
[12]   Rapid Evolution of Recombinant Saccharomyces cerevisiae for Xylose Fermentation through Formation of Extrachromosomal Circular DNA [J].
Demeke, Mekonnen M. ;
Foulquie-Moreno, Maria R. ;
Dumortier, Francoise ;
Thevelein, Johan M. .
PLOS GENETICS, 2015, 11 (03)
[13]   Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering [J].
Demeke, Mekonnen M. ;
Dietz, Heiko ;
Li, Yingying ;
Foulquie-Moreno, Maria R. ;
Mutturi, Sarma ;
Deprez, Sylvie ;
Den Abt, Tom ;
Bonini, Beatriz M. ;
Liden, Gunnar ;
Dumortier, Francoise ;
Verplaetse, Alex ;
Boles, Eckhard ;
Thevelein, Johan M. .
BIOTECHNOLOGY FOR BIOFUELS, 2013, 6
[14]   Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains [J].
dos Santos, Leandro Vieira ;
Carazzolle, Marcelo Falsarella ;
Nagamatsu, Sheila Tiemi ;
Sampaio, Nadia Maria Vieira ;
Almeida, Ludimila Dias ;
Siqueira Pirolla, Renan Augusto ;
Borelli, Guilherme ;
Ribeiro Correa, Thamy Livia ;
Argueso, Juan Lucas ;
Guimaraes Pereira, Goncalo Amarante .
SCIENTIFIC REPORTS, 2016, 6
[15]   Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae [J].
Feng, Quanzhou ;
Liu, Z. Lewis ;
Weber, Scott A. ;
Li, Shizhong .
PLOS ONE, 2018, 13 (04)
[16]  
Gietz RD, 2007, NAT PROTOC, V2, P31, DOI 10.1038/nprot.2007.13
[17]   COX15 codes for a mitochondrial protein essential for the assembly of yeast cytochrome oxidase [J].
Glerum, DM ;
Muroff, I ;
Jin, C ;
Tzagoloff, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (30) :19088-19094
[18]   A new efficient gene disruption cassette for repeated use in budding yeast [J].
Guldener, U ;
Heck, S ;
Fiedler, T ;
Beinhauer, J ;
Hegemann, JH .
NUCLEIC ACIDS RESEARCH, 1996, 24 (13) :2519-2524
[19]   A Study on the Fundamental Mechanism and the Evolutionary Driving Forces behind Aerobic Fermentation in Yeast [J].
Hagman, Arne ;
Piskur, Jure .
PLOS ONE, 2015, 10 (01)
[20]   Towards industrial pentose-fermenting yeast strains [J].
Hahn-Hagerdal, Barbel ;
Karhumaa, Kaisa ;
Fonseca, Cesar ;
Spencer-Martins, Isabel ;
Gorwa-Grauslund, Marie F. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2007, 74 (05) :937-953