共 74 条
Crabtree/Warburg-like aerobic xylose fermentation by engineered Saccharomyces cerevisiae
被引:31
作者:
Lee, Sae-Byuk
[1
,2
,3
,4
]
Tremaine, Mary
[1
]
Place, Michael
[1
,3
,4
]
Liu, Lisa
[1
]
Pier, Austin
[1
]
Krause, David J.
[1
,2
,3
,4
]
Xie, Dan
[1
]
Zhang, Yaoping
[1
]
Landick, Robert
[1
,5
,6
]
Gasch, Audrey P.
[1
,3
,4
]
Hittinger, Chris Todd
[1
,2
,3
,4
]
Sato, Trey K.
[1
]
机构:
[1] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53705 USA
[2] Univ Wisconsin, Wisconsin Energy Inst, JF Crow Inst Study Evolut, Madison, WI 53705 USA
[3] Univ Wisconsin, Lab Genet, Madison, WI 53705 USA
[4] Univ Wisconsin, Ctr Genom Sci Innovat, Madison, WI 53705 USA
[5] Univ Wisconsin, Dept Biochem, 420 Henry Mall, Madison, WI 53705 USA
[6] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA
基金:
美国国家科学基金会;
美国食品与农业研究所;
关键词:
Crabtree;
Warburg effect;
Metabolic engineering;
Biofuels;
Xylose fermentation;
Adaptive laboratory evolution;
Saccharomyces cerevisiae;
XYLITOL DEHYDROGENASE;
CORN STOVER;
YEAST;
METABOLISM;
ISOMERASE;
EVOLUTION;
REDUCTASE;
STRAIN;
GENE;
BIOFUELS;
D O I:
10.1016/j.ymben.2021.09.008
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
Bottlenecks in the efficient conversion of xylose into cost-effective biofuels have limited the widespread use of plant lignocellulose as a renewable feedstock. The yeast Saccharomyces cerevisiae ferments glucose into ethanol with such high metabolic flux that it ferments high concentrations of glucose aerobically, a trait called the Crabtree/Warburg Effect. In contrast to glucose, most engineered S. cerevisiae strains do not ferment xylose at economically viable rates and yields, and they require respiration to achieve sufficient xylose metabolic flux and energy return for growth aerobically. Here, we evolved respiration-deficient S. cerevisiae strains that can grow on and ferment xylose to ethanol aerobically, a trait analogous to the Crabtree/Warburg Effect for glucose. Through genome sequence comparisons and directed engineering, we determined that duplications of genes encoding engineered xylose metabolism enzymes, as well as TKL1, a gene encoding a transketolase in the pentose phosphate pathway, were the causative genetic changes for the evolved phenotype. Reengineered duplications of these enzymes, in combination with deletion mutations in HOG1, ISU1, GRE3, and IRA2, increased the rates of aerobic and anaerobic xylose fermentation. Importantly, we found that these genetic modifications function in another genetic background and increase the rate and yield of xylose-to-ethanol conversion in industrially relevant switchgrass hydrolysate, indicating that these specific genetic modifications may enable the sustainable production of industrial biofuels from yeast. We propose a model for how key regulatory mutations prime yeast for aerobic xylose fermentation by lowering the threshold for overflow metabolism, allowing mutations to increase xylose flux and to redirect it into fermentation products.
引用
收藏
页码:119 / 130
页数:12
相关论文