Missing boundary data recovering for the Helmholtz problem

被引:3
作者
Ben Fatma, Riadh [1 ]
Azaiez, Mejdi [2 ]
Ben Abda, Amel [1 ]
Gmati, Nabil [1 ]
机构
[1] Ecole Natl Ingn Tunis, LAMSIN, Tunis 1002, Tunisia
[2] ENSCPB, CNRS, UMR 8508, TREFLE, F-33607 Pessac, France
来源
COMPTES RENDUS MECANIQUE | 2007年 / 335卷 / 12期
关键词
data completion; inverse problem; Cauchy-Helmholtz problem; interface operator; Steklov-Poincare operator;
D O I
10.1016/j.crme.2007.10.006
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This Note is dedicated to the numerical treatment of the ill-posed Cauchy-Helmholtz problem. Resorting to the domain decomposition tools, these missing boundary data are rephrased through an 'interfacial' equation. This equation is solved via a preconditioned Richardson algorithm with dynamic relaxation. The efficiency of the proposed method is illustrated by some numerical experiments.
引用
收藏
页码:787 / 792
页数:6
相关论文
共 10 条
[1]   Solving Cauchy problems by minimizing an energy-like functional [J].
Andrieux, S ;
Baranger, TN ;
Ben Abda, A .
INVERSE PROBLEMS, 2006, 22 (01) :115-133
[2]  
Azaiez M, 2005, INT J APPL MATH MECH, V1, P106
[3]   On Cauchy's problem:: II.: Completion, regularization and approximation [J].
Azaiez, Mejdi ;
Ben Belgacem, Faker ;
El Fekih, Henda .
INVERSE PROBLEMS, 2006, 22 (04) :1307-1336
[4]   Recovery of cracks from incomplete boundary data [J].
Cimetière, A ;
Delvare, F ;
Jaoua, M ;
Kallel, M ;
Pons, F .
INVERSE PROBLEMS IN ENGINEERING, 2002, 10 (04) :377-392
[5]   Numerical method for solving a class of nonlinear elliptic inverse problems [J].
Essaouini, M ;
Nachaoui, A ;
El Hajji, S .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 162 (01) :165-181
[6]  
Hadamard J., 1953, LECT CAUCHYS PROBLEM, DOI 10.1063/1.3061337
[7]  
MARTIN D, 2000, DOCUMENTATION MELINA
[8]  
QUARTERONI A, 1990, 90246 U MINN SUP I
[9]   Approximate solution of a Cauchy problem for the Helmholtz equation [J].
Reginska, Teresa ;
Reginski, Kazimierz .
INVERSE PROBLEMS, 2006, 22 (03) :975-989
[10]  
[No title captured]