Effects of RNA branching on the electrostatic stabilization of viruses

被引:35
作者
Erdemci-Tandogan, Gonca [1 ]
Wagner, Jef [1 ]
van der Schoot, Paul [2 ,3 ]
Podgornik, Rudolf [4 ,5 ,6 ]
Zandi, Roya [1 ]
机构
[1] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
[2] Eindhoven Univ Technol, Grp Theory Polymers & Soft Matter, POB 513, NL-5600 MB Eindhoven, Netherlands
[3] Univ Utrecht, Inst Theoret Phys, Leuvenlaan 4, NL-3584 CE Utrecht, Netherlands
[4] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
[5] J Stefan Inst, Dept Theoret Phys, SI-1000 Ljubljana, Slovenia
[6] Univ Ljubljana, Dept Phys, SI-1000 Ljubljana, Slovenia
基金
美国国家科学基金会;
关键词
CAPSID PROTEIN; GENOME; ENCAPSULATION; POLYMER; SIZES;
D O I
10.1103/PhysRevE.94.022408
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Many single-stranded (ss) ribonucleic acid (RNA) viruses self-assemble from capsid protein subunits and the nucleic acid to form an infectious virion. It is believed that the electrostatic interactions between the negatively charged RNA and the positively charged viral capsid proteins drive the encapsidation, although there is growing evidence that the sequence of the viral RNA also plays a role in packaging. In particular, the sequence will determine the possible secondary structures that the ssRNA will take in solution. In this work, we use a mean-field theory to investigate how the secondary structure of the RNA combined with electrostatic interactions affects the efficiency of assembly and stability of the assembled virions. We show that the secondary structure of RNA may result in negative osmotic pressures while a linear polymer causes positive osmotic pressures for the same conditions. This may suggest that the branched structure makes the RNA more effectively packaged and the virion more stable.
引用
收藏
页数:10
相关论文
共 50 条
[1]   All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution [J].
Andoh, Y. ;
Yoshii, N. ;
Yamada, A. ;
Fujimoto, K. ;
Kojima, H. ;
Mizutani, K. ;
Nakagawa, A. ;
Nomoto, A. ;
Okazaki, S. .
JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (16)
[2]   Electrostatic origin of the genome packing in viruses [J].
Belyi, Vladimir A. ;
Muthukumar, M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (46) :17174-17178
[3]   Random polyelectrolytes and polyampholytes in solution [J].
Borukhov, I ;
Andelman, D ;
Orland, H .
EUROPEAN PHYSICAL JOURNAL B, 1998, 5 (04) :869-880
[4]   Statistical analysis of sizes and shapes of virus capsids and their resulting elastic properties [J].
Bozic, Anze Losdorfer ;
Siber, Antonio ;
Podgornik, Rudolf .
JOURNAL OF BIOLOGICAL PHYSICS, 2013, 39 (02) :215-228
[5]   How simple can a model of an empty viral capsid be? Charge distributions in viral capsids [J].
Bozic, Anze Losdorfer ;
Siber, Antonio ;
Podgornik, Rudolf .
JOURNAL OF BIOLOGICAL PHYSICS, 2012, 38 (04) :657-671
[6]   Physics of RNA and viral assembly [J].
Bruinsma, R. F. .
EUROPEAN PHYSICAL JOURNAL E, 2006, 19 (03) :303-310
[7]   Exploiting Fluorescent Polymers To Probe the Self-Assembly of Virus-like Particles [J].
Cadena-Nava, Ruben D. ;
Hu, Yufang ;
Garmann, Rees F. ;
Ng, Benny ;
Zelikin, Alexander N. ;
Knobler, Charles M. ;
Gelbart, William M. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (10) :2386-2391
[8]   In Vitro Quantification of the Relative Packaging Efficiencies of Single-Stranded RNA Molecules by Viral Capsid Protein [J].
Comas-Garcia, Mauricio ;
Cadena-Nava, Ruben D. ;
Rao, A. L. N. ;
Knobler, Charles M. ;
Gelbart, William M. .
JOURNAL OF VIROLOGY, 2012, 86 (22) :12271-12282
[9]  
ELLEUCH K, 1995, J PHYS I, V5, P465, DOI 10.1051/jp1:1995140
[10]   Role of Genome in the Formation of Conical Retroviral Shells [J].
Erdemci-Tandogan, Gonca ;
Wagner, Jef ;
van der Schoot, Paul ;
Zandi, Roya .
JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (26) :6298-6305