Comparison of Data Driven Models (DDM) for Soil Moisture Retrieval using Microwave Remote Sensing Data

被引:0
作者
Hephi, Liauw [1 ]
See, Chai Soo [1 ]
机构
[1] Univ Malaysia Sarawak, Fac Comp Sci & Informat Technol, Kuching, Sarawak, Malaysia
来源
2015 9TH INTERNATIONAL CONFERENCE ON IT IN ASIA (CITA) | 2015年
关键词
Data Driven Modelling (DDM); Neural Network Model; Fuzzy-Rule Model; Bayesian Model; Multiple Regression Model and Support Vector Machines (SVM); Root-Mean-Square-Error (RMSE); LAND;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper aims to explore the use of various DDM methods for soil moisture retrieval, identifying the advantages and disadvantages of each, compare and evaluate the results for further study. The study looks into the advantages and disadvantages of each DDM method, summarizing the Root-Mean-Square-Error (RMSE) to identify soil moisture condition. In this study, Neural Network Model, Fuzzy-Rule Model, Bayesian Model, Multiple Regression Model and Support Vector Machines (SVM) were reviewed. The Neural Network model performed better compared with other models, proven with the lowest number of RMSE. The SVM model also showed high potential, whereas the Bayesian, Multiple Regression and Fuzzy-Rule Based models showed higher RMSE values, which indicate higher difference in accuracy.
引用
收藏
页数:5
相关论文
共 24 条
[1]   Global-scale comparison of passive (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations (MERRA-Land) [J].
Al-Yaari, A. ;
Wigneron, J. -P. ;
Ducharne, A. ;
Kerr, Y. H. ;
Wagner, W. ;
De lannoy, G. ;
Reichle, R. ;
Al Bitar, A. ;
Dorigo, W. ;
Richaume, P. ;
Mialon, A. .
REMOTE SENSING OF ENVIRONMENT, 2014, 152 :614-626
[2]  
[Anonymous], 1986, MICROWAVE REMOTE SEN
[3]   Use of Soil Moisture Variability in Artificial Neural Network Retrieval of Soil Moisture [J].
Chai, Soo-See ;
Walker, Jeffrey P. ;
Makarynskyy, Oleg ;
Kuhn, Michael ;
Veenendaal, Bert ;
West, Geoff .
REMOTE SENSING, 2010, 2 (01) :166-190
[4]  
Chiu S.L., 1997, J ADV COMPUTATIONAL, V1, P1
[5]   PROCEDURES FOR THE DESCRIPTION OF AGRICULTURAL CROPS AND SOILS IN OPTICAL AND MICROWAVE REMOTE-SENSING STUDIES [J].
CIHLAR, J ;
DOBSON, MC ;
SCHMUGGE, T ;
HOOGEBOOM, P ;
JANSE, ARP ;
BARET, F ;
GUYOT, G ;
LETOAN, T ;
PAMPALONI, P .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1987, 8 (03) :427-439
[6]   The Soil Moisture Active Passive (SMAP) Mission [J].
Entekhabi, Dara ;
Njoku, Eni G. ;
O'Neill, Peggy E. ;
Kellogg, Kent H. ;
Crow, Wade T. ;
Edelstein, Wendy N. ;
Entin, Jared K. ;
Goodman, Shawn D. ;
Jackson, Thomas J. ;
Johnson, Joel ;
Kimball, John ;
Piepmeier, Jeffrey R. ;
Koster, Randal D. ;
Martin, Neil ;
McDonald, Kyle C. ;
Moghaddam, Mahta ;
Moran, Susan ;
Reichle, Rolf ;
Shi, J. C. ;
Spencer, Michael W. ;
Thurman, Samuel W. ;
Tsang, Leung ;
Van Zyl, Jakob .
PROCEEDINGS OF THE IEEE, 2010, 98 (05) :704-716
[7]  
Gruhier C., 2009, HYDROL EARTH SYST SC
[8]   Modeling surface finish in end milling using fuzzy subtractive clustering-based system identification method [J].
Hayajneh, MT ;
Radaideh, SM .
MATERIALS AND MANUFACTURING PROCESSES, 2003, 18 (04) :653-665
[9]   Enhancing model-based land surface temperature estimates using multiplatform microwave observations [J].
Holmes, Thomas R. H. ;
Crow, Wade T. ;
Yilmaz, M. Tugrul ;
Jackson, Thomas J. ;
Basara, Jeffrey B. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (02) :577-591
[10]  
Khalil Abedalrazq, 2005, 7 INT C INF FUS FUSI