Surface Structural and Chemical Evolution of Layered LiNi0.8Co0.15Al0.050O2 (NCA) under High Voltage and Elevated Temperature Conditions

被引:56
作者
Mukherjee, Pinaki [1 ]
Faenza, Nicholas V. [2 ]
Pereira, Nathalie [2 ]
Ciston, Jim [3 ]
Piper, Louis F. J. [4 ]
Amatucci, Glenn G. [2 ]
Cosandey, Frederic [1 ]
机构
[1] Rutgers State Univ, Mat Sci & Engn, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Energy Storage Res Grp, Dept Mat Sci & Engn, North Brunswick, NJ 08902 USA
[3] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA
[4] SUNY Binghamton, Mat Sci & Engn, Binghamton, NY 13902 USA
关键词
LITHIUM-ION BATTERIES; TRANSITION-METAL DISSOLUTION; POSITIVE ELECTRODE MATERIALS; CAPACITY-FADING MECHANISMS; NICKEL-OXIDE DERIVATIVES; LI-ION; CATHODE MATERIALS; THERMAL-STABILITY; PHASE-TRANSITION; OXYGEN VACANCIES;
D O I
10.1021/acs.chemmater.7b05305
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper reports new insights into structural and chemical evolution of surface phases of LiNi0.8Co0.15Al0.05O2 (NCA) held at constant high voltages (up to 4.75 V) as well as high temperatures (60 degrees C) by correlating crystal structure using high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) imaging with chemistry using electron energy loss spectroscopy (EELS). We also followed the Al distribution within individual NCA particles by X-ray energy dispersive spectroscopy (EDS). The progression of these phases as a function of distance from the edge shows simultaneous evolution of crystal structures and chemistry from rocksalt to layered, forming a complete solid solution. We have also observed an extended disordered phase with rocksalt (Fm (3) over barm) symmetry in which quantitative electron energy loss spectroscopy reveals it to be an oxygen deficient cation disordered phase with chemical characteristics, as determined by EELS, similar to spinel. The formation of these disordered phases with cation and oxygen vacancies has been driven by surface oxygen loss caused by reactions with the electrolyte followed by cation migration from the octahedral 3a M (M = Ni, Co, Al) layer to the octahedral 3b Li layer. These surface rocksalt phases are not fully dense as they contain Al and Li as well as a high concentration of cation and oxygen vacancies. After discharge, Li is detected within these phases indicative that Li transport has occurred through these rocksalt phases. At 60 degrees C and 4.75 V a very large impedance rise is observed leading to complete cell irreversibility which is caused by significant metal dissolution from the cathode and formation of surface porosity. In the near surface region of some particles, a phase transformation from R (3) over barm (03) to P (3) over bar m1 (O1) is also observed which has become thermodynamically stable from complete delithiation as well as from local Al surface depletion.
引用
收藏
页码:8431 / 8445
页数:15
相关论文
共 73 条
[1]   Thermal behavior of Li1-yNiO2 and the decomposition mechanism [J].
Arai, H ;
Okada, S ;
Sakurai, Y ;
Yamaki, J .
SOLID STATE IONICS, 1998, 109 (3-4) :295-302
[2]   Correlating Structural Changes and Gas Evolution during the Thermal Decomposition of Charged LixNi0.8Co0.15Al0.05O2 Cathode Materials [J].
Bak, Seong-Min ;
Nam, Kyung-Wan ;
Chang, Wonyoung ;
Yu, Xiqian ;
Hu, Enyuan ;
Hwang, Sooyeon ;
Stach, Eric A. ;
Kim, Kwang-Bum ;
Chung, Kyung Yoon ;
Yang, Xiao-Qing .
CHEMISTRY OF MATERIALS, 2013, 25 (03) :337-351
[3]   First Evidence of Manganese-Nickel Segregation and Densification upon Cycling in Li-Rich Layered Oxides for Lithium Batteries [J].
Boulineau, Adrien ;
Simonin, Loic ;
Colin, Jean-Francois ;
Bourbon, Carole ;
Patoux, Sebastien .
NANO LETTERS, 2013, 13 (08) :3857-3863
[4]   Comparison of the chemical stability of Li1-xCoO2 and Li1-xNi0.85Co0.15O2 cathodes [J].
Chebiam, RV ;
Prado, F ;
Manthiram, A .
JOURNAL OF SOLID STATE CHEMISTRY, 2002, 163 (01) :5-9
[5]   Soft chemistry synthesis and characterization of layered Li1-xNi1-yCoyO2-δ (0 ≤ x ≤ 1 and 0 ≤ y ≤ 1) [J].
Chebiam, RV ;
Prado, F ;
Manthiram, A .
CHEMISTRY OF MATERIALS, 2001, 13 (09) :2951-2957
[6]   Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries [J].
Chen, CH ;
Liu, J ;
Stoll, ME ;
Henriksen, G ;
Vissers, DR ;
Amine, K .
JOURNAL OF POWER SOURCES, 2004, 128 (02) :278-285
[7]   Factors influencing the layered to spinel-like phase transition in layered oxide cathodes [J].
Choi, S ;
Manthiram, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1157-A1163
[8]   Comparison of metal ion dissolutions from lithium ion battery cathodes [J].
Choi, W. ;
Manthiram, A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (09) :A1760-A1764
[9]   Fe valence determination and Li elemental distribution in lithiated FeO0.7F1.3/C nanocomposite battery materials by electron energy loss spectroscopy (EELS) [J].
Cosandey, F. ;
Su, D. ;
Sina, M. ;
Pereira, N. ;
Amatucci, G. G. .
MICRON, 2012, 43 (01) :22-29
[10]   First-Principles Simulation of the (Li-Ni-Vacancy)O Phase Diagram and Its Relevance for the Surface Phases in Ni-Rich Li-Ion Cathode Materials [J].
Das, Hena ;
Urban, Alexander ;
Huang, Wenxuan ;
Ceder, Gerbrand .
CHEMISTRY OF MATERIALS, 2017, 29 (18) :7840-7851