Strboh A homologue of NADPH oxidase regulates wound-induced oxidative burst and facilitates wound-healing in potato tubers

被引:48
作者
Kumar, G. N. Mohan [1 ]
Iyer, Suresh [1 ]
Knowles, N. Richard [1 ]
机构
[1] Washington State Univ, Dept Hort & Landscape Architecture, Postharvest Physiol & Biochem Lab, Pullman, WA 99164 USA
关键词
aging; NADPH oxidase (NOX); superoxide radicals; solanum tuberosum; wounding; wound healing;
D O I
10.1007/s00425-007-0589-9
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
During 30-months of storage at 4 degrees C, potato (Solanum tuberosum L.) tubers progressively lose the ability to produce superoxide in response to wounding, resist microbial infection, and develop a suberized wound periderm. Using differentially aged tubers, we demonstrate that Strboh A is responsible for the wound-induced oxidative burst in potato and aging attenuates its expression. In vivo superoxide production and NADPH oxidase (NOX) activity from 1-month-old tubers increased to a maximum 18-24b after wounding and then decreased to barely detectable levels by 72 h. Wounding also induced a 68% increase in microsomal protein within 18 h. These wound-induced responses were lost over a 25- to 30-month storage period. Superoxide production and NOX activity were inhibited by diphenylene iodonium chloride, a specific inhibitor of NOX, which in turn effectively inhibited wound-healing and increased susceptibility to microbial infection and decay in 1-month-old tubers. Wound-induced superoxide production was also inhibited by EGTA-mediated destabilization of membranes. The ability to restore superoxide production to EGTA-treated tissue with Ca+2 declined with advancing tuber age, likely a consequence of age-related changes in membrane architecture. Of the five homologues of NOX (Strboh A-D and F), wounding induced the expression of Strboh A in 6-month-old tubers but this response was absent in tubers stored for 25-30 months. Strboh A thus mediates the initial burst of superoxide in response to wounding of potato tubers; loss of its expression increases the susceptibility to microbial infection and contributes to the age-induced loss of wound-healing ability.
引用
收藏
页码:25 / 36
页数:12
相关论文
共 63 条
[1]   NADPH oxidase genes from tomato (Lycopersicon esculentum) and curly-leaf pondweed (Potamogeton crispus) [J].
Amicucci, E ;
Gaschler, K ;
Ward, JM .
PLANT BIOLOGY, 1999, 1 (05) :524-528
[2]   PLASMA-MEMBRANE REDOX ENZYME IS INVOLVED IN THE SYNTHESIS OF O2- AND H2O2 BY PHYTOPHTHORA ELICITOR-STIMULATED ROSE CELLS [J].
AUH, CK ;
MURPHY, TM .
PLANT PHYSIOLOGY, 1995, 107 (04) :1241-1247
[3]   Impact of starvation-refeeding on kinetics and protein expression of trout liver NADPH-production systems [J].
Barroso, JB ;
Peragón, J ;
Contreras-Jurado, C ;
García-Salguero, L ;
Corpas, FJ ;
Esteban, FJ ;
Peinado, MA ;
De La Higuera, M ;
Lupiáñez, JA .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 1998, 274 (06) :R1578-R1587
[4]   Biochemical characterization of the suberization-associated anionic peroxidase of potato [J].
Bernards, MA ;
Fleming, WD ;
Llewellyn, DB ;
Priefer, R ;
Yang, XL ;
Sabatino, A ;
Plourde, GL .
PLANT PHYSIOLOGY, 1999, 121 (01) :135-145
[5]   Role of active oxygen species and NO in plant defence responses [J].
Bolwell, GP .
CURRENT OPINION IN PLANT BIOLOGY, 1999, 2 (04) :287-294
[6]   Mechanisms for the generation of reactive oxygen species in plant defence - a broad perspective [J].
Bolwell, GP ;
Wojtaszek, P .
PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 1997, 51 (06) :347-366
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   ELICITOR-INDUCED AND WOUND-INDUCED OXIDATIVE CROSS-LINKING OF A PROLINE-RICH PLANT-CELL WALL PROTEIN - A NOVEL, RAPID DEFENSE RESPONSE [J].
BRADLEY, DJ ;
KJELLBOM, P ;
LAMB, CJ .
CELL, 1992, 70 (01) :21-30
[9]  
BRISSON LF, 1994, PLANT CELL, V6, P1703, DOI 10.1105/tpc.6.12.1703