A blind randomized validated convolutional neural network for auto-segmentation of clinical target volume in rectal cancer patients receiving neoadjuvant radiotherapy

被引:18
作者
Wu, Yijun [1 ]
Kang, Kai [1 ]
Han, Chang [1 ]
Wang, Shaobin [2 ]
Chen, Qi [2 ]
Chen, Yu [2 ]
Zhang, Fuquan [1 ]
Liu, Zhikai [1 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Radiat Oncol, Beijing 100730, Peoples R China
[2] MedMind Technol Co Ltd, Beijing, Peoples R China
关键词
deep learning; rectal cancer; neoadjuvant radiotherapy; convolutional neural network; clinical evaluation; DELINEATION; ORGANS; RISK;
D O I
10.1002/cam4.4441
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Delineation of clinical target volume (CTV) for radiotherapy is a time-consuming and labor-intensive work. This study aims to propose a novel convolutional neural network (CNN)-based model for fast auto-segmentation of CTV. To evaluate its performance and clinical utility, a blind randomized validation method was used. Methods Our proposed model was based on the generally accepted U-Net architecture using computed tomography slices with CTV contours delineated by experienced radiation clinicians from 135 rectal patients receiving neoadjuvant radiotherapy. The Dice similarity coefficient (DSC) and 95th percentile Hausdorff distance (95HD) were used to measure segmentation performance. The validated dataset of additional 20 patients for clinical evaluation by 10 experienced oncology clinicians from 7 centers was randomly and blindly divided into two groups for clinicians' scoring and Turing test, respectively. Second evaluation was performed with different randomization after 2 weeks. Results The mean DSC and 95HD values of the proposed model were 0.90 +/- 0.02 and 8.11 +/- 1.93 mm for CTV of rectal cancer patients, respectively. The average time for automatic segmentation in the validation groups was 15 s per patient. By clinicians' scoring, the AI model performed better than manually delineating, though the differences were not significant (Week 0: 2.59 vs. 2.52, p = 0.086; Week 2: 2.55 vs. 2.47, p = 0.115). Additionally, the mean positive rates in the Turing test were 40.5% in Week 0 and 45.2% in Week 2, which demonstrated the great intelligence of our model. Conclusions Our proposed model can be used clinically for assisting contouring of CTVs in rectal cancer patients receiving neoadjuvant radiotherapy, which improves the efficiency and consistency of radiation clinicians' work.
引用
收藏
页码:166 / 175
页数:10
相关论文
共 19 条
[1]   Auto-delineation of oropharyngeal clinical target volumes using 3D convolutional neural networks [J].
Cardenas, Carlos E. ;
Anderson, Brian M. ;
Aristophanous, Michalis ;
Yan, Jinzhong ;
Rhee, Dong Joo ;
McCarroll, Rachel E. ;
Mohamed, Abdallah S. R. ;
Kamal, Mona ;
Elgohari, Baher A. ;
Elhalawani, Hesham M. ;
Fuller, Clifton D. ;
Rao, Arvind ;
Garden, Adam S. ;
Court, Laurence E. .
PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (21)
[2]   Deep Learning Algorithm for Auto-Delineation of High-Risk Oropharyngeal Clinical Target Volumes With Built-In Dice Similarity Coefficient Parameter Optimization Function [J].
Cardenas, Carlos E. ;
McCarroll, Rachel E. ;
Court, Laurence E. ;
Elgohari, Baher A. ;
Elhalawani, Hesham ;
Fuller, Clifton D. ;
Kamal, Mona J. ;
Meheissen, Mohamed A. M. ;
Mohamed, Abdallah S. R. ;
Rao, Arvind ;
Williams, Bowman ;
Wong, Andrew ;
Yang, Jinzhong ;
Aristophanous, Michalis .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 101 (02) :468-478
[3]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[4]   MR-based artificial intelligence model to assess response to therapy in locally advanced rectal cancer [J].
Ferrari, R. ;
Mancini-Terracciano, C. ;
Voena, C. ;
Rengo, M. ;
Zerunian, M. ;
Ciardiello, A. ;
Grasso, S. ;
Mare, V ;
Paramatti, R. ;
Russomando, A. ;
Santacesaria, R. ;
Satta, A. ;
Camillocci, E. Solfaroli ;
Faccini, R. ;
Laghi, A. .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 118 :1-9
[5]   Swedish rectal cancer trial: Long lasting benefits from radiotherapy on survival and local recurrence rate [J].
Folkesson, J ;
Birgisson, H ;
Pahlman, L ;
Cedermark, B ;
Glimelius, B ;
Gunnarsson, U .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (24) :5644-5650
[6]   PREOPERATIVE RADIOTHERAPY AS ADJUVANT TREATMENT IN RECTAL-CANCER - FINAL RESULTS OF A RANDOMIZED STUDY OF THE EUROPEAN ORGANIZATION FOR RESEARCH AND TREATMENT OF CANCER (EORTC) [J].
GERARD, A ;
BUYSE, M ;
NORDLINGER, B ;
LOYGUE, J ;
PENE, F ;
KEMPF, P ;
BOSSET, JF ;
GIGNOUX, M ;
ARNAUD, JP ;
DESAIVE, C ;
DUEZ, N .
ANNALS OF SURGERY, 1988, 208 (05) :606-614
[7]   Artificial intelligence in radiation oncology [J].
Huynh, Elizabeth ;
Hosny, Ahmed ;
Guthier, Christian ;
Bitterman, Danielle S. ;
Petit, Steven E. ;
Haas-Kogan, Daphne A. ;
Kann, Benjamin ;
Aert, Hugo J. W. L. ;
Mak, Raymond H. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2020, 17 (12) :771-781
[8]  
Larsson R, 2018, IEEE ENG MED BIO, P5898, DOI 10.1109/EMBC.2018.8513506
[9]   VARIABILITY OF TARGET AND NORMAL STRUCTURE DELINEATION FOR BREAST CANCER RADIOTHERAPY: AN RTOG MULTI-INSTITUTIONAL AND MULTIOBSERVER STUDY [J].
Li, X. Allen ;
Tai, An ;
Arthur, Douglas W. ;
Buchholz, Thomas A. ;
Macdonald, Shannon ;
Marks, Lawrence B. ;
Moran, Jean M. ;
Pierce, Lori J. ;
Rabinovitch, Rachel ;
Taghian, Alphonse ;
Vicini, Frank ;
Woodward, Wendy ;
White, Julia R. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2009, 73 (03) :944-951
[10]   Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning [J].
Liang, Shujun ;
Tang, Fan ;
Huang, Xia ;
Yang, Kaifan ;
Zhong, Tao ;
Hu, Runyue ;
Liu, Shangqing ;
Yuan, Xinrui ;
Zhang, Yu .
EUROPEAN RADIOLOGY, 2019, 29 (04) :1961-1967