Terahertz as a Frontier Area for Science and Technology

被引:6
|
作者
Irizawa, Akinori [1 ]
Lupi, Stefano [2 ,3 ]
Marcelli, Augusto [3 ,4 ]
机构
[1] Osaka Univ, Inst Sci & Ind Res ISIR, 8-1 Mihogaoaka, Ibaraki, Osaka 5670047, Japan
[2] Sapienza Univ, Dept Phys, Ple Aldo Moro 5, I-00185 Rome, Italy
[3] Ist Nazl Fis Nucl, Lab Nazl Frascat INFN LNF, Via Enrico Fermi 54, I-00044 Frascati, Italy
[4] RICMASS, Int Ctr Mat Sci Superstripes, Via Sabelli 119A, I-00185 Rome, Italy
来源
CONDENSED MATTER | 2021年 / 6卷 / 03期
关键词
THz; FEL; coherent synchrotron radiation; waveguides; THz detector; THz imaging; SYNCHROTRON-RADIATION; SPECTROSCOPY; TOOL;
D O I
10.3390/condmat6030023
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Recent theoretical and experimental research is triggering interest to technologies based on radiation in the region from similar to 0.1 to 20 Terahertz (THz). Today, this region of the electromagnetic (e.m.) spectrum is a frontier area for research in many disciplines. The technological roadmap of the THz radiation considers outdoor and indoor communications, security, drug detection, biometrics, food quality control, agriculture, medicine, semiconductors, and air pollution, and demands high-power and sub-ps compact sources, modern detectors, and new integrated systems. There are still many open questions regarding working at THz frequencies and with THz radiation. In particular, we need to invest in new methodologies and in materials exhibiting the unusual or exotic properties of THz. This book contains original papers dealing with some emerging THz applications, new devices, sources and detectors, and materials with advanced properties for applications in biomedicine, cultural heritage, technology, and space.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Terahertz Science and Technology in Astronomy, Telecommunications, and Biophysics
    Li, Jing
    Deng, Xianjin
    Li, Yangmei
    Hu, Jie
    Miao, Wei
    Lin, Changxing
    Jiang, Jun
    Shi, Shengcai
    RESEARCH, 2025, 8
  • [2] The 2017 terahertz science and technology roadmap
    Dhillon, S. S.
    Vitiello, M. S.
    Linfield, E. H.
    Davies, A. G.
    Hoffmann, Matthias C.
    Booske, John
    Paoloni, Claudio
    Gensch, M.
    Weightman, P.
    Williams, G. P.
    Castro-Camus, E.
    Cumming, D. R. S.
    Simoens, F.
    Escorcia-Carranza, I.
    Grant, J.
    Lucyszyn, Stepan
    Kuwata-Gonokami, Makoto
    Konishi, Kuniaki
    Koch, Martin
    Schmuttenmaer, Charles A.
    Cocker, Tyler L.
    Huber, Rupert
    Markelz, A. G.
    Taylor, Z. D.
    Wallace, Vincent P.
    Zeitler, J. Axel
    Sibik, Juraj
    Korter, Timothy M.
    Ellison, B.
    Rea, S.
    Goldsmith, P.
    Cooper, Ken B.
    Appleby, Roger
    Pardo, D.
    Huggard, P. G.
    Krozer, V.
    Shams, Haymen
    Fice, Martyn
    Renaud, Cyril
    Seeds, Alwyn
    Stoehr, Andreas
    Naftaly, Mira
    Ridler, Nick
    Clarke, Roland
    Cunningham, John E.
    Johnston, Michael B.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (04)
  • [3] The 2023 terahertz science and technology roadmap
    Leitenstorfer, Alfred
    Moskalenko, Andrey S.
    Kampfrath, Tobias
    Kono, Junichiro
    Castro-Camus, Enrique
    Peng, Kun
    Qureshi, Naser
    Turchinovich, Dmitry
    Tanaka, Koichiro
    Markelz, Andrea G.
    Havenith, Martina
    Hough, Cameron
    Joyce, Hannah J.
    Padilla, Willie J.
    Zhou, Binbin
    Kim, Ki-Yong
    Zhang, Xi-Cheng
    Jepsen, Peter Uhd
    Dhillon, Sukhdeep
    Vitiello, Miriam
    Linfield, Edmund
    Davies, A. Giles
    Hoffmann, Matthias C.
    Lewis, Roger
    Tonouchi, Masayoshi
    Klarskov, Pernille
    Seifert, Tom S.
    Gerasimenko, Yaroslav A.
    Mihailovic, Dragan
    Huber, Rupert
    Boland, Jessica L.
    Mitrofanov, Oleg
    Dean, Paul
    Ellison, Brian N.
    Huggard, Peter G.
    Rea, Simon P.
    Walker, Christopher
    Leisawitz, David T.
    Gao, Jian Rong
    Li, Chong
    Chen, Qin
    Valusis, Gintaras
    Wallace, Vincent P.
    Pickwell-MacPherson, Emma
    Shang, Xiaobang
    Hesler, Jeffrey
    Ridler, Nick
    Renaud, Cyril C.
    Kallfass, Ingmar
    Nagatsuma, Tadao
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2023, 56 (22)
  • [4] Graphene-based devices in terahertz science and technology
    Otsuji, T.
    Tombet, S. A. Boubanga
    Satou, A.
    Fukidome, H.
    Suemitsu, M.
    Sano, E.
    Popov, V.
    Ryzhii, M.
    Ryzhii, V.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (30)
  • [5] Terahertz Electronics: The Last Frontier
    Lee, Thomas H.
    PROCEEDINGS OF THE 2014 44TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC 2014), 2014, : 30 - 34
  • [6] Nanosized Material and Terahertz Technology Application in Environmental Science and Engineering
    Li, Bin
    Zhai, Zhi-cai
    Xu, Jie
    Zhang, Dan-ting
    Li, Yan-ting
    Zou, Yuan
    He, Cheng-long
    Wang, Hai-dong
    Qian, Guang
    Zhu, Yu-cheng
    Wo, Yong-hua
    You, Ai-ju
    Zhou, Shan
    2016 INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND ENGINEERING (ESE 2016), 2016, : 482 - 487
  • [7] Terahertz Electronics: The Last Frontier
    Lee, Thomas H.
    PROCEEDINGS OF THE 40TH EUROPEAN SOLID-STATE CIRCUIT CONFERENCE (ESSCIRC 2014), 2014, : 30 - 34
  • [8] Terahertz technology
    Siegel, PH
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2002, 50 (03) : 910 - 928
  • [9] Screening Mail for Powders using Terahertz Technology
    Kemp, Mike
    OPTICS AND PHOTONICS FOR COUNTERTERRORISM AND CRIME FIGHTING VII OPTICAL MATERIALS IN DEFENCE SYSTEMS TECHNOLOGY VIII AND QUANTUM-PHYSICS-BASED INFORMATION SECURITY, 2011, 8189
  • [10] A Novel Terahertz Waveguide Filter Based on MEMS Technology
    Shan, G. C.
    Zhang, N.
    Yan, Z.
    Shek, C. H.
    2019 IEEE MTT-S INTERNATIONAL WIRELESS SYMPOSIUM (IWS 2019), 2019,