Mimicking the Active Sites of Organophosphorus Hydrolase on the Backbone of Graphene Oxide to Destroy Nerve Agent Simulants

被引:51
作者
Ma, Xuejuan [1 ,2 ]
Zhang, Lin [1 ,2 ]
Xia, Mengfan [1 ,2 ]
Li, Shuangqin [1 ,2 ]
Zhang, Xiaohong [1 ,2 ]
Zhang, Yaodong [1 ,2 ]
机构
[1] Shaanxi Normal Univ, Sch Chem & Chem Engn, Minist Educ, Key Lab Analyt Chem Life Sci Shaanxi Prov, Xian 710062, Peoples R China
[2] Shaanxi Normal Univ, Sch Chem & Chem Engn, Minist Educ, Key Lab Appl Surface & Colloid Chem, Xian 710062, Peoples R China
基金
中国国家自然科学基金;
关键词
biomimetic catalyst; organophosphorus hydrolase; nerve agents; graphene oxide; synergistic effect; CATALYTIC-ACTIVITY; QUANTUM DOTS; DEGRADATION; PHOSPHOTRIESTERASE; NANOPARTICLES; PHOTOCATALYSIS; HYDROLYSIS; MECHANISM; POLYMERS;
D O I
10.1021/acsami.7b07770
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recent global military events, such as the conflict in Syria, have emphasized the need to find effective strategies to rapidly destroy organophosphorus-based nerve agents. In this work, we designed active site-engineered graphene oxide (GO) via polymerization (polymer bead-GOs) as organophosphorus hydrolase (OPH) mimetic hotspots for the rapid degradation of nerve agents. This hybrid catalyst has a high total turnover frequency value of 0.65 s(-1) and good stability (94.8% activity maintained after 5 cycles). Mechanism investigations suggested that the high catalytic performance could be attributed to the synergistic effect among the clusters of imidazole and the presence of - COOH groups on the GO surface and Zn2+.
引用
收藏
页码:21089 / 21093
页数:5
相关论文
共 29 条
[1]   Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase [J].
Aubert, SD ;
Li, YC ;
Raushel, FM .
BIOCHEMISTRY, 2004, 43 (19) :5707-5715
[2]   Theoretical study of the phosphotriesterase reaction mechanism [J].
Chen, Shi-Lu ;
Fang, Wei-Hai ;
Himo, Fahmi .
JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (06) :1253-1255
[3]   4-Nitrophenol surface molecularly imprinted polymers based on multiwalled carbon nanotubes for the elimination of paraoxon pollution [J].
Chi, Wenhao ;
Shi, Heguang ;
Shi, Wang ;
Guo, Yong ;
Guo, Tianying .
JOURNAL OF HAZARDOUS MATERIALS, 2012, 227 :243-249
[4]   Shape Control of Mn 3 O 4 Nanoparticles on Nitrogen- Doped Graphene for Enhanced Oxygen Reduction Activity [J].
Duan, Jingjing ;
Chen, Sheng ;
Dai, Sheng ;
Qiao, Shi Zhang .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (14) :2072-2078
[5]   U.N. Taps Special Labs To Investigate Syrian Attack [J].
Enserink, Martin ;
Kaiser, Jocelyn .
SCIENCE, 2013, 341 (6150) :1050-1051
[6]   Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications [J].
Georgakilas, Vasilios ;
Tiwari, Jitendra N. ;
Kemp, K. Christian ;
Perman, Jason A. ;
Bourlinos, Athanasios B. ;
Kim, Kwang S. ;
Zboril, Radek .
CHEMICAL REVIEWS, 2016, 116 (09) :5464-5519
[7]  
Ghanem Eman, 2005, Toxicol Appl Pharmacol, V207, P459, DOI 10.1016/j.taap.2005.02.025
[8]   ENVIRONMENTAL APPLICATIONS OF SEMICONDUCTOR PHOTOCATALYSIS [J].
HOFFMANN, MR ;
MARTIN, ST ;
CHOI, WY ;
BAHNEMANN, DW .
CHEMICAL REVIEWS, 1995, 95 (01) :69-96
[9]   Update 1 of: Destruction and detection of chemical warfare agents [J].
Jang, Yoon Jeong ;
Kim, Kibong ;
Tsay, Olga G. ;
Atwood, David A. ;
Churchill, David G. .
Chemical Reviews, 2015, 115 (24) :PR1-PR76
[10]   Study on the Catalytic Activity of Noble Metal Nanoparticles on Reduced Graphene Oxide for Oxygen Evolution Reactions in Lithium-Air Batteries [J].
Jeong, Yo Sub ;
Park, Jin-Bum ;
Jung, Hun-Gi ;
Kirn, Jooho ;
Luo, Xiangyi ;
Lu, Jun ;
Curtiss, Larry ;
Amine, Khalil ;
Sun, Yang-Kook ;
Scrosati, Bruno ;
Lee, Yun Jung .
NANO LETTERS, 2015, 15 (07) :4261-4268