Bayesian Semiparametric Structural Equation Models with Latent Variables

被引:58
作者
Yang, Mingan [1 ]
Dunson, David B. [2 ]
机构
[1] St Louis Univ, Sch Publ Hlth, St Louis, MO 63104 USA
[2] Duke Univ, Durham, NC 27706 USA
基金
美国国家卫生研究院;
关键词
Dirichlet process; factor analysis; latent class; latent trait; mixture model; nonparametric Bayes; parameter expansion; FACTOR ANALYZERS; PARAMETER EXPANSION; HIERARCHICAL-MODELS; PRIOR DISTRIBUTIONS; MIXTURES; PRIORS; HETEROGENEITY; EXTENSION; INFERENCE;
D O I
10.1007/s11336-010-9174-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In this article, we propose a broad class of semiparametric Bayesian SEMs, which allow mixed categorical and continuous manifest variables while also allowing the latent variables to have unknown distributions. In order to include typical identifiability restrictions on the latent variable distributions, we rely on centered Dirichlet process (CDP) and CDP mixture (CDPM) models. The CDP will induce a latent class model with an unknown number of classes, while the CDPM will induce a latent trait model with unknown densities for the latent traits. A simple and efficient Markov chain Monte Carlo algorithm is developed for posterior computation, and the methods are illustrated using simulated examples, and several applications.
引用
收藏
页码:675 / 693
页数:19
相关论文
共 34 条
[1]  
[Anonymous], 1986, LISREL 6 ANAL LINEAR
[2]  
[Anonymous], 1989, STRUCTURAL EQUATIONS
[3]   Semiparametric Thurstonian models for recurrent choices: A Bayesian analysis [J].
Ansari, Asim ;
Iyengar, Raghuram .
PSYCHOMETRIKA, 2006, 71 (04) :631-657
[4]   FERGUSON DISTRIBUTIONS VIA POLYA URN SCHEMES [J].
BLACKWELL, D ;
MACQUEEN, JB .
ANNALS OF STATISTICS, 1973, 1 (02) :353-355
[5]  
Brown ER, 2003, BIOMETRICS, V59, P221
[6]   A Bayesian semiparametric model for random-effects meta-analysis [J].
Burr, D ;
Doss, H .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (469) :242-251
[7]   A semiparametric Bayesian model for randomised block designs [J].
Bush, CA ;
MacEachern, SN .
BIOMETRIKA, 1996, 83 (02) :275-285
[8]   Bayesian dynamic modeling of latent trait distributions [J].
Dunson, David B. .
BIOSTATISTICS, 2006, 7 (04) :551-568
[9]   BAYESIAN DENSITY-ESTIMATION AND INFERENCE USING MIXTURES [J].
ESCOBAR, MD ;
WEST, M .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) :577-588
[10]   A bayesian semiparametric latent variable model for mixed responses [J].
Fahrmeir, Ludwig ;
Raach, Alexander .
PSYCHOMETRIKA, 2007, 72 (03) :327-346