Structure-function analysis of the antiangiogenic ATWLPPR peptide inhibiting VEGF165 binding to neuropilin-1 and molecular dynamics simulations of the ATWLPPR/neuropilin-1 complex

被引:96
作者
Starzec, Anna [1 ]
Ladam, Patrick [1 ]
Vassy, Roger [1 ]
Badache, Sabah [1 ]
Bouchemal, Nadia [1 ]
Navaza, Alda [1 ]
Du Penhoat, Catherine Herve [1 ]
Perret, Gerard Y. [1 ]
机构
[1] Univ Paris 13, UMR 7033, F-93017 Bobigny, France
关键词
D O I
10.1016/j.peptides.2007.09.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Heptapeptide ATWLPPR (A7R), identified in our laboratory by screening a mutated phage library, was shown to bind specifically to neuropilin-1 (NRP-1) and then to selectively inhibit VEGF(165) binding to this receptor. In vivo, treatment with A7R resulted in decreasing breast cancer angiogenesis and growth. The present work is focused on structural characterization of A7R. Analogs of the peptide, obtained by substitution of each amino acid with alanine (alanine-scanning) or by amino acid deletion, have been systematically assayed to determine the relative importance of the side chains of each residue with respect to the inhibitory effect of A7R on VEGF165 binding to NRP-1. We show here the importance of the C-terminal sequence LPPR and particularly the key role of C-terminal arginine. In solution, A7R displays significant secondary structure of the backbone adopting an extended conformation. However, the functional groups of arginine are very flexible in the absence of NRP-1 pointing to an induced fit upon binding to the receptor. A MD trajectory of the A7R/NRP-1 complex in explicit water, based on the recent tuftsin/NRP-1 crystal structure, has revealed the hydrogen-bonding network that contributes to A7R's binding activity. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:2397 / 2402
页数:6
相关论文
共 43 条
[1]  
Aivazian D, 2000, NAT STRUCT BIOL, V7, P1023
[2]   THE PROGRAM XEASY FOR COMPUTER-SUPPORTED NMR SPECTRAL-ANALYSIS OF BIOLOGICAL MACROMOLECULES [J].
BARTELS, C ;
XIA, TH ;
BILLETER, M ;
GUNTERT, P ;
WUTHRICH, K .
JOURNAL OF BIOMOLECULAR NMR, 1995, 6 (01) :1-10
[3]   Vascular endothelial growth factor effect on endothelial cell proliferation, migration, and platelet-activating factor synthesis is Flk-1-dependent [J].
Bernatchez, PN ;
Soker, S ;
Sirois, MG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (43) :31047-31054
[4]   Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis [J].
Binétruy-Tournaire, R ;
Demangel, C ;
Malavaud, B ;
Vassy, R ;
Rouyre, S ;
Kraemer, M ;
Plouët, J ;
Derbin, C ;
Perret, G ;
Mazie, JC .
EMBO JOURNAL, 2000, 19 (07) :1525-1533
[5]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[6]   The biology of VEGF and its receptors [J].
Ferrara, N ;
Gerber, HP ;
LeCouter, J .
NATURE MEDICINE, 2003, 9 (06) :669-676
[7]   ANGIOGENESIS IN CANCER, VASCULAR, RHEUMATOID AND OTHER DISEASE [J].
FOLKMAN, J .
NATURE MEDICINE, 1995, 1 (01) :27-31
[8]   Torsion angle dynamics for NMR structure calculation with the new program DYANA [J].
Guntert, P ;
Mumenthaler, C ;
Wuthrich, K .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 273 (01) :283-298
[9]   EFFICIENT COMPUTATION OF 3-DIMENSIONAL PROTEIN STRUCTURES IN SOLUTION FROM NUCLEAR-MAGNETIC-RESONANCE DATA USING THE PROGRAM DIANA AND THE SUPPORTING PROGRAMS CALIBA, HABAS AND GLOMSA [J].
GUNTERT, P ;
BRAUN, W ;
WUTHRICH, K .
JOURNAL OF MOLECULAR BIOLOGY, 1991, 217 (03) :517-530
[10]   Conformational analysis of protein and nucleic acid fragments with the new grid search algorithm FOUND [J].
Güntert, P ;
Billeter, M ;
Ohlenschläger, O ;
Brown, LR ;
Wüthrich, K .
JOURNAL OF BIOMOLECULAR NMR, 1998, 12 (04) :543-548