The origin of electron mobility enhancement in strained MOSFETs

被引:28
作者
Hadjisavvas, G. [1 ]
Tsetseris, L. [1 ]
Pantelides, S. I. [1 ]
机构
[1] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
基金
美国国家科学基金会;
关键词
electron mobility; MOSFETs; strain;
D O I
10.1109/LED.2007.906471
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Straining Si MOS structures has been known to enhance electron mobilities. However, the origin of the effect has remained elusive as conventional modeling can only account for it by large ad hoc reduction of macroscopic interface roughness. Here, we report first-principle fully quantum-mechanical mobility calculations based on an atomic-scale interface model. Wave-function penetration into an oxide is automatically included. The results demonstrate that atomic-scale departures from abruptness (Si-Si bond on the oxide side, and Si-O-Si on the Si side) naturally lead to enhanced mobilities in strained structures in quantitative agreement with available data. The results have important ramifications for mobility models in nanoscale devices.
引用
收藏
页码:1018 / 1020
页数:3
相关论文
共 16 条
[1]   Bonding arrangements at the Si-SiO2 and SiC-SiO2 interfaces and a possible origin of their contrasting properties [J].
Buczko, R ;
Pennycook, SJ ;
Pantelides, ST .
PHYSICAL REVIEW LETTERS, 2000, 84 (05) :943-946
[2]   Carrier mobilities and process stability of strained Si n- and p-MOSFETs on SiGe virtual substrates [J].
Currie, MT ;
Leitz, CW ;
Langdo, TA ;
Taraschi, G ;
Fitzgerald, EA ;
Antoniadis, DA .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2001, 19 (06) :2268-2279
[3]  
Evans MH, 2005, INT EL DEVICES MEET, P611
[4]   First-principles mobility calculations and atomic-scale interface roughness in nanoscale structures [J].
Evans, MH ;
Zhang, XG ;
Joannopoulos, JD ;
Pantelides, ST .
PHYSICAL REVIEW LETTERS, 2005, 95 (10)
[5]   On the enhanced electron mobility in strained-silicon inversion layers [J].
Fischetti, MV ;
Gámiz, F ;
Hänsch, W .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (12) :7320-7324
[6]   MICROSCOPIC STRUCTURE OF THE SIO2/SI INTERFACE [J].
HIMPSEL, FJ ;
MCFEELY, FR ;
TALEBIBRAHIMI, A ;
YARMOFF, JA ;
HOLLINGER, G .
PHYSICAL REVIEW B, 1988, 38 (09) :6084-6096
[7]   High-performance strained-SOI CMOS devices using thin film SiGe-on-insulator technology [J].
Mizuno, T ;
Sugiyama, N ;
Tezuka, T ;
Numata, T ;
Takagi, S .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2003, 50 (04) :988-994
[8]   High-performance nMOSFETs using a novel strained Si/SiGe CMOS architecture [J].
Olsen, SH ;
O'Neill, AG ;
Driscoll, LS ;
Kwa, KSK ;
Chattopadhyay, S ;
Waite, AM ;
Tang, YT ;
Evans, AGR ;
Norris, DJ ;
Cullis, AG ;
Paul, DJ ;
Robbins, DJ .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2003, 50 (09) :1961-1969
[9]   Electron wavefunction penetration into gate dielectric and interface scattering - An alternative to surface roughness scattering model [J].
Polishchuk, I ;
Hu, CM .
2001 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2001, :51-52
[10]   Strained SiCMOS (SS CMOS) technology: opportunities and challenges [J].
Rim, K ;
Anderson, R ;
Boyd, D ;
Cardone, F ;
Chan, K ;
Chen, H ;
Christansen, S ;
Chu, J ;
Jenkins, K ;
Kanarsky, T ;
Koester, S ;
Lee, BH ;
Lee, K ;
Mazzeo, V ;
Mocuta, A ;
Mocuta, D ;
Mooney, PM ;
Oldiges, P ;
Ott, J ;
Ronsheim, P ;
Roy, R ;
Steegen, A ;
Yang, M ;
Zhu, H ;
Ieong, M ;
Wong, HSP .
SOLID-STATE ELECTRONICS, 2003, 47 (07) :1133-1139