NON-SPECTRALITY OF THE PLANAR SELF-AFFINE MEASURES WITH FOUR-ELEMENT DIGIT SETS

被引:11
作者
Su, Juan [1 ]
Liu, Yao [2 ]
Liu, Jing-Cheng [2 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Hunan, Peoples R China
[2] Hunan Normal Univ, Sch Math & Stat, Minist Educ, Key Lab Comp & Stochast Math, Changsha 410081, Hunan, Peoples R China
关键词
Orthonormal Exponential; Fourier Transform; Spectral Measure; Zeros; PROPERTY;
D O I
10.1142/S0218348X19501159
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the non-spectrality of the planar self-affine measures mu(M,) (D) generated by an expanding integer matrix M is an element of M-2(Z) and a four-element digit set D = {(0 0), (alpha(1) alpha(2)), (beta(1) beta(2)), (-alpha(1) - beta(1) -alpha(2) - beta(2))} with alpha(1)beta(2) - alpha(2)beta(1) is not an element of 2Z. We show that L-2(mu(M,) (D)) contains an infinite orthogonal set of exponential functions if and only if det (M) is an element of 2Z. Moreover, if det (M) is an element of 2Z + 1, then there exist at most 4 mutually orthogonal exponential functions in L-2(mu(M,D)), and the number 4 is the best.
引用
收藏
页数:7
相关论文
共 20 条
  • [1] Spectrality of a class of infinite convolutions
    An, Li-Xiang
    He, Xing-Gang
    Lau, Ka-Sing
    [J]. ADVANCES IN MATHEMATICS, 2015, 283 : 362 - 376
  • [2] Spectrality of the planar Sierpinski family
    An, Li-Xiang
    He, Xing-Gang
    Tao, Li
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (02) : 725 - 732
  • [3] A class of spectral Moran measures
    An, Li-Xiang
    He, Xing-Gang
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (01) : 343 - 354
  • [4] On spectral N-Bernoulli measures
    Dai, Xin-Rong
    He, Xing-Gang
    Lau, Ka-Sing
    [J]. ADVANCES IN MATHEMATICS, 2014, 259 : 511 - 531
  • [5] Spectral property of Cantor measures with consecutive digits
    Dai, Xin-Rong
    He, Xing-Gang
    Lai, Chun-Kit
    [J]. ADVANCES IN MATHEMATICS, 2013, 242 : 187 - 208
  • [6] When does a Bernoulli convolution admit a spectrum?
    Dai, Xin-Rong
    [J]. ADVANCES IN MATHEMATICS, 2012, 231 (3-4) : 1681 - 1693
  • [7] Fourier frequencies in affine iterated function systems
    Dutkay, Dorin Ervin
    Jorgensen, Palle E. T.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 247 (01) : 110 - 137
  • [8] Analysis of orthogonality and of orbits in affine iterated function systems
    Dutkay, Dorin Ervin
    Jorgensen, Palle E. T.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2007, 256 (04) : 801 - 823
  • [9] HADAMARD TRIPLES GENERATE SELF-AFFINE SPECTRAL MEASURES
    Dutkay, Dorin Ervin
    Haussermann, John
    Lai, Chun-Kit
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (02) : 1439 - 1481
  • [10] Fuglede B., 1974, Journal of Functional Analysis, V16, P101, DOI 10.1016/0022-1236(74)90072-X